These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 26658423)
1. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei. Esteves A; Knoll-Gellida A; Canclini L; Silvarrey MC; André M; Babin PJ J Lipid Res; 2016 Feb; 57(2):219-32. PubMed ID: 26658423 [TBL] [Abstract][Full Text] [Related]
2. Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio): evidence for subfunctionalization or neofunctionalization of duplicated genes. Karanth S; Lall SP; Denovan-Wright EM; Wright JM BMC Evol Biol; 2009 Sep; 9():219. PubMed ID: 19725974 [TBL] [Abstract][Full Text] [Related]
3. Tissue-specific transcriptional modulation of fatty acid-binding protein genes, fabp2, fabp3 and fabp6, by fatty acids and the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). Venkatachalam AB; Sawler DL; Wright JM Gene; 2013 May; 520(1):14-21. PubMed ID: 23466978 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical subfunctionalization of fabp1a, fabp1b and fabp10 tissue-specific expression may account for retention of these duplicated genes in the zebrafish (Danio rerio) genome. Sharma MK; Liu RZ; Thisse C; Thisse B; Denovan-Wright EM; Wright JM FEBS J; 2006 Jul; 273(14):3216-29. PubMed ID: 16857010 [TBL] [Abstract][Full Text] [Related]
5. n-3 PUFA reduction caused by fabp2 deletion interferes with triacylglycerol metabolism and cholesterolhomeostasis in fish. Zhao Y; Cao X; Fu L; Gao J Appl Microbiol Biotechnol; 2020 Mar; 104(5):2149-2161. PubMed ID: 31950220 [TBL] [Abstract][Full Text] [Related]
6. Tandem duplication of the fabp1b gene and subsequent divergence of the tissue-specific distribution of fabp1b.1 and fabp1b.2 transcripts in zebrafish (Danio rerio). Karanth S; Denovan-Wright EM; Thisse C; Thisse B; Wright JM Genome; 2009 Dec; 52(12):985-92. PubMed ID: 19953126 [TBL] [Abstract][Full Text] [Related]
7. Identification of a non-classical three-dimensional nuclear localization signal in the intestinal fatty acid binding protein. Suárez M; Canclini L; Esteves A PLoS One; 2020; 15(11):e0242312. PubMed ID: 33180886 [TBL] [Abstract][Full Text] [Related]
8. Visualization of lipid metabolism in the zebrafish intestine reveals a relationship between NPC1L1-mediated cholesterol uptake and dietary fatty acid. Walters JW; Anderson JL; Bittman R; Pack M; Farber SA Chem Biol; 2012 Jul; 19(7):913-25. PubMed ID: 22749558 [TBL] [Abstract][Full Text] [Related]
9. Enterocyte fatty acid-binding proteins (FABPs): different functions of liver and intestinal FABPs in the intestine. Gajda AM; Storch J Prostaglandins Leukot Essent Fatty Acids; 2015 Feb; 93():9-16. PubMed ID: 25458898 [TBL] [Abstract][Full Text] [Related]
10. Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Huang X; Zhou Y; Sun Y; Wang Q Prog Lipid Res; 2022 Jul; 87():101178. PubMed ID: 35780915 [TBL] [Abstract][Full Text] [Related]
11. Divergent evolution of cis-acting peroxisome proliferator-activated receptor elements that differentially control the tandemly duplicated fatty acid-binding protein genes, fabp1b.1 and fabp1b.2, in zebrafish. Laprairie RB; Denovan-Wright EM; Wright JM Genome; 2016 Jun; 59(6):403-12. PubMed ID: 27228313 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a BODIPY-labeled fluorescent fatty acid analogue. Binding to fatty acid-binding proteins, intracellular localization, and metabolism. Thumser AE; Storch J Mol Cell Biochem; 2007 May; 299(1-2):67-73. PubMed ID: 16645726 [TBL] [Abstract][Full Text] [Related]
14. Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Lagakos WS; Gajda AM; Agellon L; Binas B; Choi V; Mandap B; Russnak T; Zhou YX; Storch J Am J Physiol Gastrointest Liver Physiol; 2011 May; 300(5):G803-14. PubMed ID: 21350192 [TBL] [Abstract][Full Text] [Related]
15. Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). Venkatachalam AB; Lall SP; Denovan-Wright EM; Wright JM BMC Evol Biol; 2012 Jul; 12():112. PubMed ID: 22776158 [TBL] [Abstract][Full Text] [Related]
16. Impacts of Sex and Exposure Duration on Gene Expression in Zebrafish Following Perfluorooctane Sulfonate Exposure. Khazaee M; Guardian MGE; Aga DS; Ng CA Environ Toxicol Chem; 2020 Feb; 39(2):437-449. PubMed ID: 31652359 [TBL] [Abstract][Full Text] [Related]
17. Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis. André M; Ando S; Ballagny C; Durliat M; Poupard G; Briançon C; Babin PJ Int J Dev Biol; 2000 Feb; 44(2):249-52. PubMed ID: 10794084 [TBL] [Abstract][Full Text] [Related]
18. Subfunctionalization of peroxisome proliferator response elements accounts for retention of duplicated fabp1 genes in zebrafish. Laprairie RB; Denovan-Wright EM; Wright JM BMC Evol Biol; 2016 Jul; 16(1):147. PubMed ID: 27421266 [TBL] [Abstract][Full Text] [Related]
19. The Checkpoints of Intestinal Fat Absorption in Obesity. Engin AB; Engin A Adv Exp Med Biol; 2024; 1460():73-95. PubMed ID: 39287849 [TBL] [Abstract][Full Text] [Related]
20. Fatty Acid-binding Proteins 1 and 2 Differentially Modulate the Activation of Peroxisome Proliferator-activated Receptor α in a Ligand-selective Manner. Hughes ML; Liu B; Halls ML; Wagstaff KM; Patil R; Velkov T; Jans DA; Bunnett NW; Scanlon MJ; Porter CJ J Biol Chem; 2015 May; 290(22):13895-906. PubMed ID: 25847235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]