These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 26658715)
1. Coincident-site lattice matching during van der Waals epitaxy. Boschker JE; Galves LA; Flissikowski T; Lopes JM; Riechert H; Calarco R Sci Rep; 2015 Dec; 5():18079. PubMed ID: 26658715 [TBL] [Abstract][Full Text] [Related]
2. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Kim Y; Cruz SS; Lee K; Alawode BO; Choi C; Song Y; Johnson JM; Heidelberger C; Kong W; Choi S; Qiao K; Almansouri I; Fitzgerald EA; Kong J; Kolpak AM; Hwang J; Kim J Nature; 2017 Apr; 544(7650):340-343. PubMed ID: 28426001 [TBL] [Abstract][Full Text] [Related]
3. Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. Li X; Basile L; Huang B; Ma C; Lee J; Vlassiouk IV; Puretzky AA; Lin MW; Yoon M; Chi M; Idrobo JC; Rouleau CM; Sumpter BG; Geohegan DB; Xiao K ACS Nano; 2015 Aug; 9(8):8078-88. PubMed ID: 26202730 [TBL] [Abstract][Full Text] [Related]
4. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum. Miwa JA; Dendzik M; Grønborg SS; Bianchi M; Lauritsen JV; Hofmann P; Ulstrup S ACS Nano; 2015 Jun; 9(6):6502-10. PubMed ID: 26039108 [TBL] [Abstract][Full Text] [Related]
5. Dative Epitaxy of Commensurate Monocrystalline Covalent van der Waals Moiré Supercrystal. Bian M; Zhu L; Wang X; Choi J; Chopdekar RV; Wei S; Wu L; Huai C; Marga A; Yang Q; Li YC; Yao F; Yu T; Crooker SA; Cheng XM; Sabirianov RF; Zhang S; Lin J; Hou Y; Zeng H Adv Mater; 2022 Apr; 34(17):e2200117. PubMed ID: 35236008 [TBL] [Abstract][Full Text] [Related]
6. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Kim J; Bayram C; Park H; Cheng CW; Dimitrakopoulos C; Ott JA; Reuter KB; Bedell SW; Sadana DK Nat Commun; 2014 Sep; 5():4836. PubMed ID: 25208642 [TBL] [Abstract][Full Text] [Related]
7. Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/Hexagonal Boron Nitride Heterostructures. Heilmann M; Prikhodko AS; Hanke M; Sabelfeld A; Borgardt NI; Lopes JMJ ACS Appl Mater Interfaces; 2020 Feb; 12(7):8897-8907. PubMed ID: 31971775 [TBL] [Abstract][Full Text] [Related]
8. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Li X; Lin MW; Lin J; Huang B; Puretzky AA; Ma C; Wang K; Zhou W; Pantelides ST; Chi M; Kravchenko I; Fowlkes J; Rouleau CM; Geohegan DB; Xiao K Sci Adv; 2016 Apr; 2(4):e1501882. PubMed ID: 27152356 [TBL] [Abstract][Full Text] [Related]
9. The van der Waals interaction and absorption and electron circular dichroism spectra of two-dimensional bilayer stacked structures. Xu C; Ding Y; Wang S; Cao S Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123182. PubMed ID: 37517268 [TBL] [Abstract][Full Text] [Related]
10. Peculiar alignment and strain of 2D WSe Mortelmans W; El Kazzi S; Nalin Mehta A; Vanhaeren D; Conard T; Meersschaut J; Nuytten T; De Gendt S; Heyns M; Merckling C Nanotechnology; 2019 Nov; 30(46):465601. PubMed ID: 31426041 [TBL] [Abstract][Full Text] [Related]
11. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy. Zuo Z; Xu Z; Zheng R; Khanaki A; Zheng JG; Liu J Sci Rep; 2015 Oct; 5():14760. PubMed ID: 26442629 [TBL] [Abstract][Full Text] [Related]
12. Growth Model of van der Waals Epitaxy of Films: A Case of AlN Films on Multilayer Graphene/SiC. Xu Y; Cao B; Li Z; Cai D; Zhang Y; Ren G; Wang J; Shi L; Wang C; Xu K ACS Appl Mater Interfaces; 2017 Dec; 9(50):44001-44009. PubMed ID: 29181968 [TBL] [Abstract][Full Text] [Related]
13. Interface-Driven Partial Dislocation Formation in 2D Heterostructures. Kim JH; Kim SY; Cho Y; Park HJ; Shin HJ; Kwon SY; Lee Z Adv Mater; 2019 Apr; 31(15):e1807486. PubMed ID: 30785234 [TBL] [Abstract][Full Text] [Related]
14. Lattice Polarity Manipulation of Quasi-vdW Epitaxial GaN Films on Graphene Through Interface Atomic Configuration. Liu F; Wang T; Zhang Z; Shen T; Rong X; Sheng B; Yang L; Li D; Wei J; Sheng S; Li X; Chen Z; Tao R; Yuan Y; Yang X; Xu F; Zhang J; Liu K; Li XZ; Shen B; Wang X Adv Mater; 2022 Feb; 34(5):e2106814. PubMed ID: 34757663 [TBL] [Abstract][Full Text] [Related]
15. Van der Waals Epitaxy of High-Quality Transition Metal Dichalcogenides on Single-Crystal Hexagonal Boron Nitride. Huang J; Meng J; Yang H; Jiang J; Xia Z; Zhang S; Zeng L; Yin Z; Zhang X Small Methods; 2024 Oct; ():e2401296. PubMed ID: 39420859 [TBL] [Abstract][Full Text] [Related]
17. Graphene Buffer Layer on SiC as a Release Layer for High-Quality Freestanding Semiconductor Membranes. Qiao K; Liu Y; Kim C; Molnar RJ; Osadchy T; Li W; Sun X; Li H; Myers-Ward RL; Lee D; Subramanian S; Kim H; Lu K; Robinson JA; Kong W; Kim J Nano Lett; 2021 May; 21(9):4013-4020. PubMed ID: 33900785 [TBL] [Abstract][Full Text] [Related]
19. Controlled van der Waals heteroepitaxy of InAs nanowires on carbon honeycomb lattices. Hong YJ; Fukui T ACS Nano; 2011 Sep; 5(9):7576-84. PubMed ID: 21838312 [TBL] [Abstract][Full Text] [Related]
20. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. Azizi A; Eichfeld S; Geschwind G; Zhang K; Jiang B; Mukherjee D; Hossain L; Piasecki AF; Kabius B; Robinson JA; Alem N ACS Nano; 2015 May; 9(5):4882-90. PubMed ID: 25885122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]