These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26658834)

  • 1. Large scale atomistic simulation of single-layer graphene growth on Ni(111) surface: molecular dynamics simulation based on a new generation of carbon-metal potential.
    Xu Z; Yan T; Liu G; Qiao G; Ding F
    Nanoscale; 2016 Jan; 8(2):921-9. PubMed ID: 26658834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth.
    Wang L; Zhang X; Chan HL; Yan F; Ding F
    J Am Chem Soc; 2013 Mar; 135(11):4476-82. PubMed ID: 23444843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene.
    Elliott JA; Shibuta Y; Amara H; Bichara C; Neyts EC
    Nanoscale; 2013 Aug; 5(15):6662-76. PubMed ID: 23774798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of chemical vapor deposition of graphene and related applications.
    Zhang Y; Zhang L; Zhou C
    Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classical molecular dynamics simulations of carbon nanofiber nucleation: the effect of carbon concentration in Ni carbide.
    Tang X; Xie Z; Yin T; Wang JW; Yang P; Huang Q
    Phys Chem Chem Phys; 2013 Oct; 15(38):16314-20. PubMed ID: 23999539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing.
    Chen S; Xiong W; Zhou YS; Lu YF; Zeng XC
    Nanoscale; 2016 May; 8(18):9746-55. PubMed ID: 27117235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What are the active carbon species during graphene chemical vapor deposition growth?
    Shu H; Tao XM; Ding F
    Nanoscale; 2015 Feb; 7(5):1627-34. PubMed ID: 25553809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics of Chirality Definable Growth of Single-Walled Carbon Nanotubes.
    Yoshikawa R; Hisama K; Ukai H; Takagi Y; Inoue T; Chiashi S; Maruyama S
    ACS Nano; 2019 Jun; 13(6):6506-6512. PubMed ID: 31117374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth.
    Patera LL; Africh C; Weatherup RS; Blume R; Bhardwaj S; Castellarin-Cudia C; Knop-Gericke A; Schloegl R; Comelli G; Hofmann S; Cepek C
    ACS Nano; 2013 Sep; 7(9):7901-12. PubMed ID: 23924234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of carbon atoms around a point defect of a graphene: a hybrid quantum/classical molecular-dynamics simulation.
    Kowaki Y; Harada A; Shimojo F; Hoshino K
    J Phys Condens Matter; 2009 Feb; 21(6):064202. PubMed ID: 21715905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QM/MD studies on graphene growth from small islands on the Ni(111) surface.
    Jiao M; Song W; Qian HJ; Wang Y; Wu Z; Irle S; Morokuma K
    Nanoscale; 2016 Feb; 8(5):3067-74. PubMed ID: 26785739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene growth at the interface between Ni catalyst layer and SiO2/Si substrate.
    Lee JH; Song KW; Park MH; Kim HK; Yang CW
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6468-71. PubMed ID: 22121737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple growth of graphene from a pre-dissolved carbon source.
    Fazi A; Nylander A; Zehri A; Sun J; Malmberg P; Ye L; Liu J; Fu Y
    Nanotechnology; 2020 Aug; 31(34):345601. PubMed ID: 32369782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field.
    Srinivasan SG; van Duin AC
    J Phys Chem A; 2011 Nov; 115(46):13269-80. PubMed ID: 21942282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle.
    Ohta Y; Okamoto Y; Page AJ; Irle S; Morokuma K
    ACS Nano; 2009 Nov; 3(11):3413-20. PubMed ID: 19827761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic simulation of a graphene-nanoribbon-metal interconnect.
    Smolyanitsky A; Tewary VK
    J Phys Condens Matter; 2011 Sep; 23(35):355006. PubMed ID: 21836321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiO(x).
    Son IH; Song HJ; Kwon S; Bachmatiuk A; Lee SJ; Benayad A; Park JH; Choi JY; Chang H; Rümmeli MH
    ACS Nano; 2014 Sep; 8(9):9224-32. PubMed ID: 25171048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.