These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
586 related articles for article (PubMed ID: 26659056)
1. RNA polymerase II-associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II. Yu M; Yang W; Ni T; Tang Z; Nakadai T; Zhu J; Roeder RG Science; 2015 Dec; 350(6266):1383-6. PubMed ID: 26659056 [TBL] [Abstract][Full Text] [Related]
2. Multiple P-TEFbs cooperatively regulate the release of promoter-proximally paused RNA polymerase II. Lu X; Zhu X; Li Y; Liu M; Yu B; Wang Y; Rao M; Yang H; Zhou K; Wang Y; Chen Y; Chen M; Zhuang S; Chen LF; Liu R; Chen R Nucleic Acids Res; 2016 Aug; 44(14):6853-67. PubMed ID: 27353326 [TBL] [Abstract][Full Text] [Related]
3. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Larochelle S; Amat R; Glover-Cutter K; Sansó M; Zhang C; Allen JJ; Shokat KM; Bentley DL; Fisher RP Nat Struct Mol Biol; 2012 Nov; 19(11):1108-15. PubMed ID: 23064645 [TBL] [Abstract][Full Text] [Related]
4. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional elongation control of hypoxic response. Soliman SHA; Iwanaszko M; Zheng B; Gold S; Howard BC; Das M; Chakrabarty RP; Chandel NS; Shilatifard A Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2321502121. PubMed ID: 38564636 [TBL] [Abstract][Full Text] [Related]
6. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. Wada T; Takagi T; Yamaguchi Y; Watanabe D; Handa H EMBO J; 1998 Dec; 17(24):7395-403. PubMed ID: 9857195 [TBL] [Abstract][Full Text] [Related]
7. JMJD5 couples with CDK9 to release the paused RNA polymerase II. Liu H; Ramachandran S; Fong N; Phang T; Lee S; Parsa P; Liu X; Harmacek L; Danhorn T; Song T; Oh S; Zhang Q; Chen Z; Zhang Q; Tu TH; Happoldt C; O'Conner B; Janknecht R; Li CY; Marrack P; Kappler J; Leach S; Zhang G Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19888-19895. PubMed ID: 32747552 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Ivaldi MS; Karam CS; Corces VG Genes Dev; 2007 Nov; 21(21):2818-31. PubMed ID: 17942706 [TBL] [Abstract][Full Text] [Related]
9. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875 [TBL] [Abstract][Full Text] [Related]
10. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Bowman EA; Kelly WG Nucleus; 2014; 5(3):224-36. PubMed ID: 24879308 [TBL] [Abstract][Full Text] [Related]
11. CDK12 globally stimulates RNA polymerase II transcription elongation and carboxyl-terminal domain phosphorylation. Tellier M; Zaborowska J; Caizzi L; Mohammad E; Velychko T; Schwalb B; Ferrer-Vicens I; Blears D; Nojima T; Cramer P; Murphy S Nucleic Acids Res; 2020 Aug; 48(14):7712-7727. PubMed ID: 32805052 [TBL] [Abstract][Full Text] [Related]
12. PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II. Chen FX; Woodfin AR; Gardini A; Rickels RA; Marshall SA; Smith ER; Shiekhattar R; Shilatifard A Cell; 2015 Aug; 162(5):1003-15. PubMed ID: 26279188 [TBL] [Abstract][Full Text] [Related]
13. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Vos SM; Farnung L; Boehning M; Wigge C; Linden A; Urlaub H; Cramer P Nature; 2018 Aug; 560(7720):607-612. PubMed ID: 30135578 [TBL] [Abstract][Full Text] [Related]
14. CDK9 keeps RNA polymerase II on track. Egloff S Cell Mol Life Sci; 2021 Jul; 78(14):5543-5567. PubMed ID: 34146121 [TBL] [Abstract][Full Text] [Related]
15. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Glover-Cutter K; Larochelle S; Erickson B; Zhang C; Shokat K; Fisher RP; Bentley DL Mol Cell Biol; 2009 Oct; 29(20):5455-64. PubMed ID: 19667075 [TBL] [Abstract][Full Text] [Related]
16. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Viladevall L; St Amour CV; Rosebrock A; Schneider S; Zhang C; Allen JJ; Shokat KM; Schwer B; Leatherwood JK; Fisher RP Mol Cell; 2009 Mar; 33(6):738-51. PubMed ID: 19328067 [TBL] [Abstract][Full Text] [Related]
17. Distinct Cdk9-phosphatase switches act at the beginning and end of elongation by RNA polymerase II. Parua PK; Kalan S; Benjamin B; Sansó M; Fisher RP Nat Commun; 2020 Aug; 11(1):4338. PubMed ID: 32859893 [TBL] [Abstract][Full Text] [Related]
18. Herpes Simplex Virus 1 (HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymerase II transcription elongation. Zaborowska J; Baumli S; Laitem C; O'Reilly D; Thomas PH; O'Hare P; Murphy S PLoS One; 2014; 9(9):e107654. PubMed ID: 25233083 [TBL] [Abstract][Full Text] [Related]
19. Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase. Kim JB; Sharp PA J Biol Chem; 2001 Apr; 276(15):12317-23. PubMed ID: 11145967 [TBL] [Abstract][Full Text] [Related]
20. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). Qi T; Tang W; Wang L; Zhai L; Guo L; Zeng X J Biol Chem; 2011 Apr; 286(17):15171-81. PubMed ID: 21378166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]