BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26659338)

  • 1. Multicenter Validation of Mean Upper Cervical Cord Area Measurements from Head 3D T1-Weighted MR Imaging in Patients with Multiple Sclerosis.
    Liu Y; Lukas C; Steenwijk MD; Daams M; Versteeg A; Duan Y; Li K; Weiler F; Hahn HK; Wattjes MP; Barkhof F; Vrenken H
    AJNR Am J Neuroradiol; 2016 Apr; 37(4):749-54. PubMed ID: 26659338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of mean upper cervical cord area (MUCCA) measurement techniques in multiple sclerosis (MS): High reproducibility and robustness to lesions, but large software and scanner effects.
    Weeda MM; Middelkoop SM; Steenwijk MD; Daams M; Amiri H; Brouwer I; Killestein J; Uitdehaag BMJ; Dekker I; Lukas C; Bellenberg B; Barkhof F; Pouwels PJW; Vrenken H
    Neuroimage Clin; 2019; 24():101962. PubMed ID: 31416017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cervical Cord T1-weighted Hypointense Lesions at MR Imaging in Multiple Sclerosis: Relationship to Cord Atrophy and Disability.
    Valsasina P; Aboulwafa M; Preziosa P; Messina R; Falini A; Comi G; Filippi M; Rocca MA
    Radiology; 2018 Jul; 288(1):234-244. PubMed ID: 29664341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive Detection of Infratentorial and Upper Cervical Cord Lesions in Multiple Sclerosis with Combined 3D FLAIR and T2-Weighted (FLAIR3) Imaging.
    Gabr RE; Lincoln JA; Kamali A; Arevalo O; Zhang X; Sun X; Hasan KM; Narayana PA
    AJNR Am J Neuroradiol; 2020 Nov; 41(11):2062-2067. PubMed ID: 33033051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of gadolinium-based contrast-agents on automated brain atrophy measurements by FreeSurfer in patients with multiple sclerosis.
    Lie IA; Kerklingh E; Wesnes K; van Nederpelt DR; Brouwer I; Torkildsen Ø; Myhr KM; Barkhof F; Bø L; Vrenken H
    Eur Radiol; 2022 May; 32(5):3576-3587. PubMed ID: 34978580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient nonlinearity effects on upper cervical spinal cord area measurement from 3D T
    Papinutto N; Bakshi R; Bischof A; Calabresi PA; Caverzasi E; Constable RT; Datta E; Kirkish G; Nair G; Oh J; Pelletier D; Pham DL; Reich DS; Rooney W; Roy S; Schwartz D; Shinohara RT; Sicotte NL; Stern WA; Tagge I; Tauhid S; Tummala S; Henry RG;
    Magn Reson Med; 2018 Mar; 79(3):1595-1601. PubMed ID: 28617996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cervical cord area measurement using volumetric brain magnetic resonance imaging in multiple sclerosis.
    Liu Z; Yaldizli Ö; Pardini M; Sethi V; Kearney H; Muhlert N; Wheeler-Kingshott C; Miller DH; Chard DT
    Mult Scler Relat Disord; 2015 Jan; 4(1):52-7. PubMed ID: 25787053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal Hyperintensity on Unenhanced T1-Weighted Brain and Cervical Spinal Cord MR Images after Multiple Doses of Linear Gadolinium-Based Contrast Agent.
    Barisano G; Bigjahan B; Metting S; Cen S; Amezcua L; Lerner A; Toga AW; Law M
    AJNR Am J Neuroradiol; 2019 Aug; 40(8):1274-1281. PubMed ID: 31345942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Relevance of Multiparametric MRI Assessment of Cervical Cord Damage in Multiple Sclerosis.
    Bonacchi R; Pagani E; Meani A; Cacciaguerra L; Preziosa P; De Meo E; Filippi M; Rocca MA
    Radiology; 2020 Sep; 296(3):605-615. PubMed ID: 32573387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis at 7T.
    Dula AN; Pawate S; Dortch RD; Barry RL; George-Durrett KM; Lyttle BD; Dethrage LM; Gore JC; Smith SA
    Mult Scler; 2016 Mar; 22(3):320-8. PubMed ID: 26209591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between cervical spinal cord morphometry and clinical disability in patients with multiple sclerosis.
    Celik NG; Karabulut AK; Fazliogullari Z; Gumus H; Cebeci H; Dogan NU
    Rev Assoc Med Bras (1992); 2023; 69(12):e20230949. PubMed ID: 37971136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of cervical spinal cord atrophy on quality of life in multiple sclerosis.
    Zurawski J; Glanz BI; Healy BC; Tauhid S; Khalid F; Chitnis T; Weiner HL; Bakshi R
    J Neurol Sci; 2019 Aug; 403():38-43. PubMed ID: 31207364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cervical and thoracic cord atrophy in multiple sclerosis phenotypes: Quantification and correlation with clinical disability.
    Mina Y; Azodi S; Dubuche T; Andrada F; Osuorah I; Ohayon J; Cortese I; Wu T; Johnson KR; Reich DS; Nair G; Jacobson S
    Neuroimage Clin; 2021; 30():102680. PubMed ID: 34215150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis.
    Yiannakas MC; Mustafa AM; De Leener B; Kearney H; Tur C; Altmann DR; De Angelis F; Plantone D; Ciccarelli O; Miller DH; Cohen-Adad J; Gandini Wheeler-Kingshott CA
    Neuroimage Clin; 2016; 10():71-7. PubMed ID: 26793433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial distribution of multiple sclerosis lesions in the cervical spinal cord.
    Eden D; Gros C; Badji A; Dupont SM; De Leener B; Maranzano J; Zhuoquiong R; Liu Y; Granberg T; Ouellette R; Stawiarz L; Hillert J; Talbott J; Bannier E; Kerbrat A; Edan G; Labauge P; Callot V; Pelletier J; Audoin B; Rasoanandrianina H; Brisset JC; Valsasina P; Rocca MA; Filippi M; Bakshi R; Tauhid S; Prados F; Yiannakas M; Kearney H; Ciccarelli O; Smith SA; Andrada Treaba C; Mainero C; Lefeuvre J; Reich DS; Nair G; Shepherd TM; Charlson E; Tachibana Y; Hori M; Kamiya K; Chougar L; Narayanan S; Cohen-Adad J
    Brain; 2019 Mar; 142(3):633-646. PubMed ID: 30715195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Focal Cervical Spinal Cord Lesions in Multiple Sclerosis: Comparison of White Matter-Suppressed T1 Inversion Recovery Sequence versus Conventional STIR and Proton Density-Weighted Turbo Spin-Echo Sequences.
    Sundarakumar DK; Smith CM; Hwang WD; Mossa-Basha M; Maravilla KR
    AJNR Am J Neuroradiol; 2016 Aug; 37(8):1561-6. PubMed ID: 27056424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Cervical Spinal Cord Segmentation in Real-World MRI of Multiple Sclerosis Patients by Optimized Hybrid Residual Attention-Aware Convolutional Neural Networks.
    Bueno A; Bosch I; Rodríguez A; Jiménez A; Carreres J; Fernández M; Marti-Bonmati L; Alberich-Bayarri A
    J Digit Imaging; 2022 Oct; 35(5):1131-1142. PubMed ID: 35789447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Cervical Cord Lesion Detection with 3D-MP2RAGE Sequence in Patients with Multiple Sclerosis.
    Demortière S; Lehmann P; Pelletier J; Audoin B; Callot V
    AJNR Am J Neuroradiol; 2020 Jun; 41(6):1131-1134. PubMed ID: 32439640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cervical Cord Atrophy and Long-Term Disease Progression in Patients with Primary-Progressive Multiple Sclerosis.
    Aymerich FX; Auger C; Alonso J; Alberich M; Sastre-Garriga J; Tintoré M; Montalban X; Rovira A
    AJNR Am J Neuroradiol; 2018 Feb; 39(2):399-404. PubMed ID: 29284602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast enrichment of spinal cord MR imaging using a ratio of T1-weighted and T2-weighted signals.
    Teraguchi M; Yamada H; Yoshida M; Nakayama Y; Kondo T; Ito H; Terada M; Kaneoke Y
    J Magn Reson Imaging; 2014 Nov; 40(5):1199-207. PubMed ID: 24395471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.