BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 26659563)

  • 1. Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities.
    Nagy LG; Riley R; Tritt A; Adam C; Daum C; Floudas D; Sun H; Yadav JS; Pangilinan J; Larsson KH; Matsuura K; Barry K; Labutti K; Kuo R; Ohm RA; Bhattacharya SS; Shirouzu T; Yoshinaga Y; Martin FM; Grigoriev IV; Hibbett DS
    Mol Biol Evol; 2016 Apr; 33(4):959-70. PubMed ID: 26659563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity.
    Ruiz-Dueñas FJ; Barrasa JM; Sánchez-García M; Camarero S; Miyauchi S; Serrano A; Linde D; Babiker R; Drula E; Ayuso-Fernández I; Pacheco R; Padilla G; Ferreira P; Barriuso J; Kellner H; Castanera R; Alfaro M; Ramírez L; Pisabarro AG; Riley R; Kuo A; Andreopoulos W; LaButti K; Pangilinan J; Tritt A; Lipzen A; He G; Yan M; Ng V; Grigoriev IV; Cullen D; Martin F; Rosso MN; Henrissat B; Hibbett D; Martínez AT
    Mol Biol Evol; 2021 Apr; 38(4):1428-1446. PubMed ID: 33211093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes.
    Floudas D; Binder M; Riley R; Barry K; Blanchette RA; Henrissat B; Martínez AT; Otillar R; Spatafora JW; Yadav JS; Aerts A; Benoit I; Boyd A; Carlson A; Copeland A; Coutinho PM; de Vries RP; Ferreira P; Findley K; Foster B; Gaskell J; Glotzer D; Górecki P; Heitman J; Hesse C; Hori C; Igarashi K; Jurgens JA; Kallen N; Kersten P; Kohler A; Kües U; Kumar TK; Kuo A; LaButti K; Larrondo LF; Lindquist E; Ling A; Lombard V; Lucas S; Lundell T; Martin R; McLaughlin DJ; Morgenstern I; Morin E; Murat C; Nagy LG; Nolan M; Ohm RA; Patyshakuliyeva A; Rokas A; Ruiz-Dueñas FJ; Sabat G; Salamov A; Samejima M; Schmutz J; Slot JC; St John F; Stenlid J; Sun H; Sun S; Syed K; Tsang A; Wiebenga A; Young D; Pisabarro A; Eastwood DC; Martin F; Cullen D; Grigoriev IV; Hibbett DS
    Science; 2012 Jun; 336(6089):1715-9. PubMed ID: 22745431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes.
    Morgenstern I; Klopman S; Hibbett DS
    J Mol Evol; 2008 Mar; 66(3):243-57. PubMed ID: 18292958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary dynamics of host specialization in wood-decay fungi.
    Krah FS; Bässler C; Heibl C; Soghigian J; Schaefer H; Hibbett DS
    BMC Evol Biol; 2018 Aug; 18(1):119. PubMed ID: 30075699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii.
    Floudas D; Held BW; Riley R; Nagy LG; Koehler G; Ransdell AS; Younus H; Chow J; Chiniquy J; Lipzen A; Tritt A; Sun H; Haridas S; LaButti K; Ohm RA; Kües U; Blanchette RA; Grigoriev IV; Minto RE; Hibbett DS
    Fungal Genet Biol; 2015 Mar; 76():78-92. PubMed ID: 25683379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomics of wood-degrading fungi.
    Ohm RA; Riley R; Salamov A; Min B; Choi IG; Grigoriev IV
    Fungal Genet Biol; 2014 Nov; 72():82-90. PubMed ID: 24853079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phylogenetic overview of the Agaricomycotina.
    Hibbett DS
    Mycologia; 2006; 98(6):917-25. PubMed ID: 17486968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution.
    Nagy LG; Riley R; Bergmann PJ; Krizsán K; Martin FM; Grigoriev IV; Cullen D; Hibbett DS
    Mol Biol Evol; 2017 Jan; 34(1):35-44. PubMed ID: 27834665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi.
    Riley R; Salamov AA; Brown DW; Nagy LG; Floudas D; Held BW; Levasseur A; Lombard V; Morin E; Otillar R; Lindquist EA; Sun H; LaButti KM; Schmutz J; Jabbour D; Luo H; Baker SE; Pisabarro AG; Walton JD; Blanchette RA; Henrissat B; Martin F; Cullen D; Hibbett DS; Grigoriev IV
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9923-8. PubMed ID: 24958869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes.
    Ruiz-Dueñas FJ; Lundell T; Floudas D; Nagy LG; Barrasa JM; Hibbett DS; Martínez AT
    Mycologia; 2013; 105(6):1428-44. PubMed ID: 23921235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Transcription Factor Roc1 Is a Key Regulator of Cellulose Degradation in the Wood-Decaying Mushroom
    Marian IM; Vonk PJ; Valdes ID; Barry K; Bostock B; Carver A; Daum C; Lerner H; Lipzen A; Park H; Schuller MBP; Tegelaar M; Tritt A; Schmutz J; Grimwood J; Lugones LG; Choi IG; Wösten HAB; Grigoriev IV; Ohm RA
    mBio; 2022 Jun; 13(3):e0062822. PubMed ID: 35604096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-omic Analyses of Extensively Decayed Pinus contorta Reveal Expression of a Diverse Array of Lignocellulose-Degrading Enzymes.
    Hori C; Gaskell J; Cullen D; Sabat G; Stewart PE; Lail K; Peng Y; Barry K; Grigoriev IV; Kohler A; Fauchery L; Martin F; Zeiner CA; Bhatnagar JM
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review.
    Lundell TK; Mäkelä MR; Hildén K
    J Basic Microbiol; 2010 Feb; 50(1):5-20. PubMed ID: 20175122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function characterization of two enzymes from novel subfamilies of manganese peroxidases secreted by the lignocellulose-degrading Agaricales fungi Agrocybe pediades and Cyathus striatus.
    Sánchez-Ruiz MI; Santillana E; Linde D; Romero A; Martínez AT; Ruiz-Dueñas FJ
    Biotechnol Biofuels Bioprod; 2024 Jun; 17(1):74. PubMed ID: 38824538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae.
    Almási É; Sahu N; Krizsán K; Bálint B; Kovács GM; Kiss B; Cseklye J; Drula E; Henrissat B; Nagy I; Chovatia M; Adam C; LaButti K; Lipzen A; Riley R; Grigoriev IV; Nagy LG
    New Phytol; 2019 Oct; 224(2):902-915. PubMed ID: 31257601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century.
    Hibbett DS
    Mycol Res; 2007 Sep; 111(Pt 9):1001-18. PubMed ID: 17964768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing lignocellulose physiochemistry after decomposition by brown rot fungi with distinct evolutionary origins.
    Kaffenberger JT; Schilling JS
    Environ Microbiol; 2015 Dec; 17(12):4885-97. PubMed ID: 25181619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi.
    Floudas D; Bentzer J; Ahrén D; Johansson T; Persson P; Tunlid A
    ISME J; 2020 Aug; 14(8):2046-2059. PubMed ID: 32382073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose.
    Kuuskeri J; Häkkinen M; Laine P; Smolander OP; Tamene F; Miettinen S; Nousiainen P; Kemell M; Auvinen P; Lundell T
    Biotechnol Biofuels; 2016; 9(1):192. PubMed ID: 27602055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.