These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 26659937)
1. Role of Beam Spot Size in Heating Targets at Depth. Ross EV; Childs J J Drugs Dermatol; 2015 Dec; 14(12):1437-42. PubMed ID: 26659937 [TBL] [Abstract][Full Text] [Related]
2. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Ash C; Dubec M; Donne K; Bashford T Lasers Med Sci; 2017 Nov; 32(8):1909-1918. PubMed ID: 28900751 [TBL] [Abstract][Full Text] [Related]
3. Simulation of heat distribution and thermal damage patterns of diode hair-removal lasers: an applicable method for optimizing treatment parameters. Ataie-Fashtami L; Shirkavand A; Sarkar S; Alinaghizadeh M; Hejazi M; Fateh M; Esmaeeli Djavid G; Zand N; Mohammadreza H Photomed Laser Surg; 2011 Jul; 29(7):509-15. PubMed ID: 21417915 [TBL] [Abstract][Full Text] [Related]
4. Temperature Depth Profiles Induced in Human Skin In Vivo Using Pulsed 975 nm Irradiation. Milanic M; Cenian A; Verdel N; Cenian W; Stergar J; Majaron B Lasers Surg Med; 2019 Nov; 51(9):774-784. PubMed ID: 31194264 [TBL] [Abstract][Full Text] [Related]
5. Importance of cutaneous cooling during photothermal epilation: theoretical and practical considerations. Klavuhn KG; Green D Lasers Surg Med; 2002; 31(2):97-105. PubMed ID: 12210593 [TBL] [Abstract][Full Text] [Related]
6. Vascular lasers and IPLS: guidelines for care from the European Society for Laser Dermatology (ESLD). Adamic M; Troilius A; Adatto M; Drosner M; Dahmane R J Cosmet Laser Ther; 2007 Jun; 9(2):113-24. PubMed ID: 17558762 [TBL] [Abstract][Full Text] [Related]
7. Light-activated sealing of skin wounds. Xu N; Yao M; Farinelli W; Hajjarian Z; Wang Y; Redmond RW; Kochevar IE Lasers Surg Med; 2015 Jan; 47(1):17-29. PubMed ID: 25418831 [TBL] [Abstract][Full Text] [Related]
8. Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling. Alexander VV; Ke K; Xu Z; Islam MN; Freeman MJ; Pitt B; Welsh MJ; Orringer JS Lasers Surg Med; 2011 Aug; 43(6):470-80. PubMed ID: 21761417 [TBL] [Abstract][Full Text] [Related]
9. Selective photothermolysis to target sebaceous glands: theoretical estimation of parameters and preliminary results using a free electron laser. Sakamoto FH; Doukas AG; Farinelli WA; Tannous Z; Shinn M; Benson S; Williams GP; Gubeli JF; Dylla HF; Anderson RR Lasers Surg Med; 2012 Feb; 44(2):175-83. PubMed ID: 22170298 [TBL] [Abstract][Full Text] [Related]
10. The effects of 1064 nm Nd:YAG laser irradiation under the different treatment conditions for skin rejuvenation: quantitative and histologic analyses. Park SR; Lee JH; Jo JH; Seo YK; Kim SM Photomed Laser Surg; 2013 Jun; 31(6):283-92. PubMed ID: 23741996 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of tissue thermal effects from 1064/1320-nm laser-assisted lipolysis and its clinical implications. DiBernardo BE; Reyes J; Chen B J Cosmet Laser Ther; 2009 Jun; 11(2):62-9. PubMed ID: 19484812 [TBL] [Abstract][Full Text] [Related]
12. Ultrasonic modulation of tissue optical properties in ex vivo porcine skin to improve transmitted transdermal laser intensity. Whiteside PJD; Qian C; Golda N; Hunt HK Lasers Surg Med; 2017 Sep; 49(7):666-674. PubMed ID: 28418076 [TBL] [Abstract][Full Text] [Related]
13. Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400- to 1100-nm wavelength range for optical penetration depth and energy deposition analysis. Shimojo Y; Nishimura T; Hazama H; Ozawa T; Awazu K J Biomed Opt; 2020 Apr; 25(4):1-14. PubMed ID: 32356424 [TBL] [Abstract][Full Text] [Related]
14. Controlled volumetric heating of subcutaneous adipose tissue using a novel radiofrequency technology. Franco W; Kothare A; Goldberg DJ Lasers Surg Med; 2009 Dec; 41(10):745-50. PubMed ID: 20014265 [TBL] [Abstract][Full Text] [Related]
15. Comparison study of intense pulsed light versus a long-pulse pulsed dye laser in the treatment of facial skin rejuvenation. Kono T; Groff WF; Sakurai H; Takeuchi M; Yamaki T; Soejima K; Nozaki M Ann Plast Surg; 2007 Nov; 59(5):479-83. PubMed ID: 17992138 [TBL] [Abstract][Full Text] [Related]
16. A systematic histologic analysis of nonablative laser therapy in a porcine model using the pulsed dye laser. Dahiya R; Lam SM; Williams EF Arch Facial Plast Surg; 2003; 5(3):218-23. PubMed ID: 12756114 [TBL] [Abstract][Full Text] [Related]
17. Laser beam diameter for port wine stain treatment. Keijzer M; Pickering JW; van Gemert MJ Lasers Surg Med; 1991; 11(6):601-5. PubMed ID: 1753854 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Light Penetration of Continuous Wave 810 nm and Superpulsed 904 nm Wavelength Light in Anesthetized Rats. Anders JJ; Wu X Photomed Laser Surg; 2016 Sep; 34(9):418-24. PubMed ID: 27500419 [TBL] [Abstract][Full Text] [Related]
19. Wavelength-dependent threshold fluences for melanosome disruption to evaluate the treatment of pigmented lesions with 532-, 730-, 755-, 785-, and 1064-nm picosecond lasers. Shimojo Y; Nishimura T; Tsuruta D; Ozawa T; Chan HHL; Kono T Lasers Surg Med; 2024 Apr; 56(4):404-418. PubMed ID: 38436524 [TBL] [Abstract][Full Text] [Related]
20. Scatter-limited phototherapy: a model for laser treatment of skin. Reinisch L Lasers Surg Med; 2002; 30(5):381-8. PubMed ID: 12116332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]