These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 26660093)
1. Global Transcriptome Analysis Reveals Distinct Aluminum-Tolerance Pathways in the Al-Accumulating Species Hydrangea macrophylla and Marker Identification. Chen H; Lu C; Jiang H; Peng J PLoS One; 2015; 10(12):e0144927. PubMed ID: 26660093 [TBL] [Abstract][Full Text] [Related]
2. Global transcriptome analysis of Al-induced genes in an Al-accumulating species, common buckwheat (Fagopyrum esculentum Moench). Yokosho K; Yamaji N; Ma JF Plant Cell Physiol; 2014 Dec; 55(12):2077-91. PubMed ID: 25273892 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). Zhu H; Wang H; Zhu Y; Zou J; Zhao FJ; Huang CF BMC Plant Biol; 2015 Jan; 15():16. PubMed ID: 25603892 [TBL] [Abstract][Full Text] [Related]
4. Identification of aluminum species in an aluminum-accumulating plant, hydrangea (Hydrangea macrophylla), by electrospray ionization mass spectrometry. Hotta H; Wang Q; Fukuda M; Aizawa S; Umemura T; Sekizawa K; Tsunoda K Anal Sci; 2008 Jun; 24(6):795-8. PubMed ID: 18544872 [TBL] [Abstract][Full Text] [Related]
5. Biochemistry and transcriptome analyses reveal key genes and pathways involved in high-aluminum stress response and tolerance in hydrangea sepals. Chen S; Qi X; Feng J; Chen H; Qin Z; Wang H; Deng Y Plant Physiol Biochem; 2022 Aug; 185():268-278. PubMed ID: 35724621 [TBL] [Abstract][Full Text] [Related]
6. An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant. Li Y; Huang J; Song X; Zhang Z; Jiang Y; Zhu Y; Zhao H; Ni D Planta; 2017 Jul; 246(1):91-103. PubMed ID: 28365842 [TBL] [Abstract][Full Text] [Related]
7. Genome-Wide Transcriptome Analysis Reveals Conserved and Distinct Molecular Mechanisms of Al Resistance in Buckwheat (Fagopyrum esculentum Moench) Leaves. Chen WW; Xu JM; Jin JF; Lou HQ; Fan W; Yang JL Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28846612 [TBL] [Abstract][Full Text] [Related]
8. Two MATE Transporters with Different Subcellular Localization are Involved in Al Tolerance in Buckwheat. Lei GJ; Yokosho K; Yamaji N; Ma JF Plant Cell Physiol; 2017 Dec; 58(12):2179-2189. PubMed ID: 29040793 [TBL] [Abstract][Full Text] [Related]
9. Identification of aluminum-activated malate transporters (ALMT) family genes in hydrangea and functional characterization of Qin Z; Chen S; Feng J; Chen H; Qi X; Wang H; Deng Y PeerJ; 2022; 10():e13620. PubMed ID: 35769137 [TBL] [Abstract][Full Text] [Related]
10. Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. Negishi T; Oshima K; Hattori M; Kanai M; Mano S; Nishimura M; Yoshida K PLoS One; 2012; 7(8):e43189. PubMed ID: 22952644 [TBL] [Abstract][Full Text] [Related]
11. Plasma membrane-localized Al-transporter from blue hydrangea sepals is a member of the anion permease family. Negishi T; Oshima K; Hattori M; Yoshida K Genes Cells; 2013 May; 18(5):341-52. PubMed ID: 23433438 [TBL] [Abstract][Full Text] [Related]
12. Functional characterization of two half-size ABC transporter genes in aluminium-accumulating buckwheat. Lei GJ; Yokosho K; Yamaji N; Fujii-Kashino M; Ma JF New Phytol; 2017 Aug; 215(3):1080-1089. PubMed ID: 28620956 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of SSR, SNP and InDel molecular markers from RNA-Seq data of guar (Cyamopsis tetragonoloba, L. Taub.) roots. Thakur O; Randhawa GS BMC Genomics; 2018 Dec; 19(1):951. PubMed ID: 30572838 [TBL] [Abstract][Full Text] [Related]
14. Aluminum-responsive genes revealed by RNA-Seq and related physiological responses in leaves of two Citrus species with contrasting aluminum-tolerance. Guo P; Qi YP; Huang WL; Yang LT; Huang ZR; Lai NW; Chen LS Ecotoxicol Environ Saf; 2018 Aug; 158():213-222. PubMed ID: 29704792 [TBL] [Abstract][Full Text] [Related]
15. De Novo Sequencing and Assembly Analysis of the Pseudostellaria heterophylla Transcriptome. Li J; Zhen W; Long D; Ding L; Gong A; Xiao C; Jiang W; Liu X; Zhou T; Huang L PLoS One; 2016; 11(10):e0164235. PubMed ID: 27764127 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic responses to aluminum stress in tea plant leaves. Huang D; Gong Z; Chen X; Wang H; Tan R; Mao Y Sci Rep; 2021 Mar; 11(1):5800. PubMed ID: 33707704 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of the metabolome and transcriptome between green and albino zones of variegated leaves from Hydrangea macrophylla 'Maculata' infected by hydrangea ringspot virus. Li Y; Li W; Hu D; Shen P; Zhang G; Zhu Y Plant Physiol Biochem; 2020 Dec; 157():195-210. PubMed ID: 33120111 [TBL] [Abstract][Full Text] [Related]
18. Physiological and Molecular Analysis of Aluminium-Induced Organic Acid Anion Secretion from Grain Amaranth (Amaranthus hypochondriacus L.) Roots. Fan W; Xu JM; Lou HQ; Xiao C; Chen WW; Yang JL Int J Mol Sci; 2016 Apr; 17(5):. PubMed ID: 27144562 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptome analyses reveal regulatory network and hub genes of aluminum response in roots of elephant grass (Cenchrus purpureus). Yan Q; Lu L; Yi X; Pereira JF; Zhang J J Hazard Mater; 2024 Sep; 476():135011. PubMed ID: 38944995 [TBL] [Abstract][Full Text] [Related]
20. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Li JY; Liu J; Dong D; Jia X; McCouch SR; Kochian LV Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6503-8. PubMed ID: 24728832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]