BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 26660343)

  • 41. Playing TETris with DNA modifications.
    Delatte B; Deplus R; Fuks F
    EMBO J; 2014 Jun; 33(11):1198-211. PubMed ID: 24825349
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation.
    Ji D; Lin K; Song J; Wang Y
    Mol Biosyst; 2014 Jul; 10(7):1749-52. PubMed ID: 24789765
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mass spectrometry reveals the presence of specific set of epigenetic DNA modifications in the Norway spruce genome.
    Yakovlev IA; Gackowski D; Abakir A; Viejo M; Ruzov A; Olinski R; Starczak M; Fossdal CG; Krutovsky KV
    Sci Rep; 2019 Dec; 9(1):19314. PubMed ID: 31848418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 5-(Hydroxymethyl)uracil and -cytosine as potential epigenetic marks enhancing or inhibiting transcription with bacterial RNA polymerase.
    Janoušková M; Vaníková Z; Nici F; Boháčová S; Vítovská D; Šanderová H; Hocek M; Krásný L
    Chem Commun (Camb); 2017 Dec; 53(99):13253-13255. PubMed ID: 29184924
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of the Epigenome by Vitamin C.
    Young JI; Züchner S; Wang G
    Annu Rev Nutr; 2015; 35():545-64. PubMed ID: 25974700
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trace analysis of methylated and hydroxymethylated cytosines in DNA by isotope-dilution LC-MS/MS: first evidence of DNA methylation in Caenorhabditis elegans.
    Hu CW; Chen JL; Hsu YW; Yen CC; Chao MR
    Biochem J; 2015 Jan; 465(1):39-47. PubMed ID: 25299492
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Positive/negative ion-switching-based LC-MS/MS method for quantification of cytosine derivatives produced by the TET-family 5-methylcytosine dioxygenases.
    Dey AS; Ayon NJ; Bhattacharya C; Gutheil WG; Mukherji M
    Biol Methods Protoc; 2020; 5(1):bpaa019. PubMed ID: 33376805
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA methylation dynamics in neurogenesis.
    Wang Z; Tang B; He Y; Jin P
    Epigenomics; 2016 Mar; 8(3):401-14. PubMed ID: 26950681
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of Naegleria Tet-like dioxygenase (NgTet1) in complexes with a reaction intermediate 5-hydroxymethylcytosine DNA.
    Hashimoto H; Pais JE; Dai N; Corrêa IR; Zhang X; Zheng Y; Cheng X
    Nucleic Acids Res; 2015 Dec; 43(22):10713-21. PubMed ID: 26323320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An oligodeoxyribonucleotide containing 5-formyl-2'-deoxycytidine (fC) at the CpG site forms a covalent complex with DNA cytosine-5 methyltransferases (DNMTs).
    Sato K; Kawamoto K; Shimamura S; Ichikawa S; Matsuda A
    Bioorg Med Chem Lett; 2016 Nov; 26(22):5395-5398. PubMed ID: 27780634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine.
    Schiesser S; Pfaffeneder T; Sadeghian K; Hackner B; Steigenberger B; Schröder AS; Steinbacher J; Kashiwazaki G; Höfner G; Wanner KT; Ochsenfeld C; Carell T
    J Am Chem Soc; 2013 Oct; 135(39):14593-9. PubMed ID: 23980549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formation and biological consequences of 5-Formylcytosine in genomic DNA.
    Zhang Y; Zhou C
    DNA Repair (Amst); 2019 Sep; 81():102649. PubMed ID: 31303545
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deciphering Epigenetic Cytosine Modifications by Direct Molecular Recognition.
    Kubik G; Summerer D
    ACS Chem Biol; 2015 Jul; 10(7):1580-9. PubMed ID: 25897631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection of human urinary 5-hydroxymethylcytosine by stable isotope dilution HPLC-MS/MS analysis.
    Yin R; Mo J; Lu M; Wang H
    Anal Chem; 2015 Feb; 87(3):1846-52. PubMed ID: 25551771
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Collisionally activated dissociation of protonated 2'-deoxycytidine, 2'-deoxyuridine, and their oxidatively damaged derivatives.
    Cao H; Wang Y
    J Am Soc Mass Spectrom; 2006 Oct; 17(10):1335-1341. PubMed ID: 16872831
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 5-methylcytosine and its derivatives.
    Yuan BF
    Adv Clin Chem; 2014; 67():151-87. PubMed ID: 25735861
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genomic distribution and possible functions of DNA hydroxymethylation in the brain.
    Wen L; Tang F
    Genomics; 2014 Nov; 104(5):341-6. PubMed ID: 25205307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct analysis of 5-methylcytosine and 5-methyl-2'-deoxycytidine in human urine by isotope dilution LC-MS/MS: correlations with N-methylated purines and oxidized DNA lesions.
    Hu CW; Liu HH; Li YJ; Chao MR
    Chem Res Toxicol; 2012 Feb; 25(2):462-70. PubMed ID: 22268645
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they?
    Santiago M; Antunes C; Guedes M; Sousa N; Marques CJ
    Genomics; 2014 Nov; 104(5):334-40. PubMed ID: 25200796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active turnover of genomic methylcytosine in pluripotent cells.
    Spada F; Schiffers S; Kirchner A; Zhang Y; Arista G; Kosmatchev O; Korytiakova E; Rahimoff R; Ebert C; Carell T
    Nat Chem Biol; 2020 Dec; 16(12):1411-1419. PubMed ID: 32778844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.