These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
589 related articles for article (PubMed ID: 26660352)
1. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Singh RK; Prasad M Protoplasma; 2016 May; 253(3):691-707. PubMed ID: 26660352 [TBL] [Abstract][Full Text] [Related]
2. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Shrawat AK; Lörz H Plant Biotechnol J; 2006 Nov; 4(6):575-603. PubMed ID: 17309731 [TBL] [Abstract][Full Text] [Related]
3. Genetic transformation of major cereal crops. Ji Q; Xu X; Wang K Int J Dev Biol; 2013; 57(6-8):495-508. PubMed ID: 24166432 [TBL] [Abstract][Full Text] [Related]
4. Plant Transformation Techniques: Agrobacterium- and Microparticle-Mediated Gene Transfer in Cereal Plants. Imani J; Kogel KH Methods Mol Biol; 2020; 2124():281-294. PubMed ID: 32277460 [TBL] [Abstract][Full Text] [Related]
5. Agrobacterium tumefaciens-mediated genetic transformation of cereals using immature embryos. Shrawat AK; Good AG Methods Mol Biol; 2011; 710():355-72. PubMed ID: 21207280 [TBL] [Abstract][Full Text] [Related]
6. An efficient Agrobacterium-mediated genetic transformation method for foxtail millet (Setaria italica L.). Sood P; Singh RK; Prasad M Plant Cell Rep; 2020 Apr; 39(4):511-525. PubMed ID: 31938834 [TBL] [Abstract][Full Text] [Related]
7. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Kumar R; Mamrutha HM; Kaur A; Venkatesh K; Sharma D; Singh GP Mol Biol Rep; 2019 Apr; 46(2):1845-1853. PubMed ID: 30707418 [TBL] [Abstract][Full Text] [Related]
8. Setaria viridis as a Model Plant for Functional Genomic Studies in C4 Crops. Martins PK; da Cunha BADB; Kobayshi AK; Molinari HBC Methods Mol Biol; 2019; 1864():49-65. PubMed ID: 30415328 [TBL] [Abstract][Full Text] [Related]
9. Gateway vectors for transformation of cereals. Karimi M; Inzé D; Van Lijsebettens M; Hilson P Trends Plant Sci; 2013 Jan; 18(1):1-4. PubMed ID: 23121806 [TBL] [Abstract][Full Text] [Related]
12. In vitro plant regeneration and genetic transformation of Dichanthium annulatum. Kumar J; Shukla SM; Bhat V; Gupta S; Gupta MG DNA Cell Biol; 2005 Nov; 24(11):670-9. PubMed ID: 16274291 [TBL] [Abstract][Full Text] [Related]
13. Transformation of maize via Agrobacterium tumefaciens using a binary co-integrate vector system. Zhao ZY; Ranch J Methods Mol Biol; 2006; 318():315-23. PubMed ID: 16673926 [TBL] [Abstract][Full Text] [Related]
14. Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass. Chen Q; Song GQ Methods Mol Biol; 2019; 1864():105-115. PubMed ID: 30415332 [TBL] [Abstract][Full Text] [Related]
15. A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus. Kimura M; Cutler S; Isobe S PLoS One; 2015; 10(7):e0131626. PubMed ID: 26176780 [TBL] [Abstract][Full Text] [Related]
16. Agrobacterium-Mediated Transformation of Setaria viridis, a Model System for Cereals and Bioenergy Crops. Finley T; Chappell H; Veena V Curr Protoc; 2021 May; 1(5):e127. PubMed ID: 33999520 [TBL] [Abstract][Full Text] [Related]
17. Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Mayavan S; Subramanyam K; Jaganath B; Sathish D; Manickavasagam M; Ganapathi A Plant Cell Rep; 2015 Oct; 34(10):1835-48. PubMed ID: 26152769 [TBL] [Abstract][Full Text] [Related]
18. Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens. Ye X; Williams EJ; Shen J; Johnson S; Lowe B; Radke S; Strickland S; Esser JA; Petersen MW; Gilbertson LA Transgenic Res; 2011 Aug; 20(4):773-86. PubMed ID: 21042934 [TBL] [Abstract][Full Text] [Related]