BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26660469)

  • 1. Computational Modeling of Tumor Response to Drug Release from Vasculature-Bound Nanoparticles.
    Curtis LT; Wu M; Lowengrub J; Decuzzi P; Frieboes HB
    PLoS One; 2015; 10(12):e0144888. PubMed ID: 26660469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational model for predicting nanoparticle accumulation in tumor vasculature.
    Frieboes HB; Wu M; Lowengrub J; Decuzzi P; Cristini V
    PLoS One; 2013; 8(2):e56876. PubMed ID: 23468887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacokinetic/Pharmacodynamics Modeling of Drug-Loaded PLGA Nanoparticles Targeting Heterogeneously Vascularized Tumor Tissue.
    Miller HA; Frieboes HB
    Pharm Res; 2019 Nov; 36(12):185. PubMed ID: 31773287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile one-pot formulation of TRAIL-embedded paclitaxel-bound albumin nanoparticles for the treatment of pancreatic cancer.
    Min SY; Byeon HJ; Lee C; Seo J; Lee ES; Shin BS; Choi HG; Lee KC; Youn YS
    Int J Pharm; 2015 Oct; 494(1):506-15. PubMed ID: 26315118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-objective optimization of tumor response to drug release from vasculature-bound nanoparticles.
    Chamseddine IM; Frieboes HB; Kokkolaras M
    Sci Rep; 2020 May; 10(1):8294. PubMed ID: 32427977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison in docetaxel-loaded nanoparticles based on three different carboxymethyl chitosans.
    Zhang E; Xing R; Liu S; Li K; Qin Y; Yu H; Li P
    Int J Biol Macromol; 2017 Aug; 101():1012-1018. PubMed ID: 28389400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing colon-specific delivery systems for anticancer drug-loaded nanoparticles: an evaluation of alginate carriers.
    Ma Y; Coombes AG
    J Biomed Mater Res A; 2014 Sep; 102(9):3167-76. PubMed ID: 24124007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
    Feng SS; Mei L; Anitha P; Gan CW; Zhou W
    Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: Evaluation of their potential for colon-specific delivery.
    Ma Y; Fuchs AV; Boase NR; Rolfe BE; Coombes AG; Thurecht KJ
    Eur J Pharm Biopharm; 2015 Aug; 94():393-403. PubMed ID: 26117186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The multilayer nanoparticles formed by layer by layer approach for cancer-targeting therapy.
    Oh KS; Lee H; Kim JY; Koo EJ; Lee EH; Park JH; Kim SY; Kim K; Kwon IC; Yuk SH
    J Control Release; 2013 Jan; 165(1):9-15. PubMed ID: 23103984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of quinic acid-conjugated nanoparticles as a drug carrier to solid tumors.
    Amoozgar Z; Park J; Lin Q; Weidle JH; Yeo Y
    Biomacromolecules; 2013 Jul; 14(7):2389-95. PubMed ID: 23738975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and in vitro evaluation of meloxicam-loaded PLGA nanoparticles on HT-29 human colon adenocarcinoma cells.
    Şengel-Türk CT; Hasçiçek C; Dogan AL; Esendagli G; Guc D; Gönül N
    Drug Dev Ind Pharm; 2012 Sep; 38(9):1107-16. PubMed ID: 22348284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iRGD-functionalized PEGylated nanoparticles for enhanced colon tumor accumulation and targeted drug delivery.
    Ma L; Chen Q; Ma P; Han MK; Xu Z; Kang Y; Xiao B; Merlin D
    Nanomedicine (Lond); 2017 Aug; 12(16):1991-2006. PubMed ID: 28745123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature.
    Yu DH; Lu Q; Xie J; Fang C; Chen HZ
    Biomaterials; 2010 Mar; 31(8):2278-92. PubMed ID: 20053444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle Optimization for Enhanced Targeted Anticancer Drug Delivery.
    Chamseddine IM; Kokkolaras M
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29049542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering nanoparticles to tackle tumor barriers.
    Li JX; Huang QY; Zhang JY; Du JZ
    J Mater Chem B; 2020 Aug; 8(31):6686-6696. PubMed ID: 32579660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery.
    Anandhakumar S; Krishnamoorthy G; Ramkumar KM; Raichur AM
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):378-385. PubMed ID: 27770906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine-based redox-responsive nanoparticles for small-molecule agent delivery.
    Wang L; You X; Lou Q; He S; Zhang J; Dai C; Zhao M; Zhao M; Hu H; Wu J
    Biomater Sci; 2019 Oct; 7(10):4218-4229. PubMed ID: 31389415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-targeted nano-in-nano albumin carriers enhance the efficacy of combined chemo/herbal therapy of lung cancer.
    Elgohary MM; Helmy MW; Mortada SM; Elzoghby AO
    Nanomedicine (Lond); 2018 Sep; 13(17):2221-2224. PubMed ID: 30265215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer.
    Liu Y; Feng L; Liu T; Zhang L; Yao Y; Yu D; Wang L; Zhang N
    Nanoscale; 2014 Mar; 6(6):3231-42. PubMed ID: 24500240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.