These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26661376)

  • 1. Free-energy calculations using classical molecular simulation: application to the determination of the melting point and chemical potential of a flexible RDX model.
    Sellers MS; Lísal M; Brennan JK
    Phys Chem Chem Phys; 2016 Mar; 18(11):7841-50. PubMed ID: 26661376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride.
    Jayaraman S; Maginn EJ
    J Chem Phys; 2007 Dec; 127(21):214504. PubMed ID: 18067361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of melting of perfect crystalline hexahydro-1,3,5-trinitro-1,3,5-s-triazine.
    Zheng L; Thompson DL
    J Chem Phys; 2006 Aug; 125(8):084505. PubMed ID: 16965027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic simulation of solid-liquid coexistence for molecular systems: application to triazole and benzene.
    Eike DM; Maginn EJ
    J Chem Phys; 2006 Apr; 124(16):164503. PubMed ID: 16674142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melting point and phase diagram of methanol as obtained from computer simulations of the OPLS model.
    Gonzalez Salgado D; Vega C
    J Chem Phys; 2010 Mar; 132(9):094505. PubMed ID: 20210403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of confinement on the solid-liquid coexistence of Lennard-Jones fluid.
    Das CK; Singh JK
    J Chem Phys; 2013 Nov; 139(17):174706. PubMed ID: 24206321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Equilibria of Solid and Fluid Phases from Molecular Dynamics Simulations with Equilibrium and Nonequilibrium Free Energy Methods.
    Bauer G; Gross J
    J Chem Theory Comput; 2019 Jun; 15(6):3778-3792. PubMed ID: 31046270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melting transition of Lennard-Jones fluid in cylindrical pores.
    Das CK; Singh JK
    J Chem Phys; 2014 May; 140(20):204703. PubMed ID: 24880307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the absolute thermodynamics of water from computer simulations: a comparison of first-principles molecular dynamics, reactive and empirical force fields.
    Pascal TA; Schärf D; Jung Y; Kühne TD
    J Chem Phys; 2012 Dec; 137(24):244507. PubMed ID: 23277945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotational defects in cyclotrimethylene trinitramine (RDX) crystals.
    Pal A; Picu RC
    J Chem Phys; 2014 Jan; 140(4):044512. PubMed ID: 25669560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of the melting point of alkali halides by means of computer simulations.
    Aragones JL; Sanz E; Valeriani C; Vega C
    J Chem Phys; 2012 Sep; 137(10):104507. PubMed ID: 22979874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-liquid interface free energy in binary systems: theory and atomistic calculations for the (110) Cu-Ag interface.
    Frolov T; Mishin Y
    J Chem Phys; 2009 Aug; 131(5):054702. PubMed ID: 19673580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path integral calculation of free energies: quantum effects on the melting temperature of neon.
    Ramírez R; Herrero CP; Antonelli A; Hernández ER
    J Chem Phys; 2008 Aug; 129(6):064110. PubMed ID: 18715054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
    Ramírez R; Herrero CP
    J Chem Phys; 2010 Oct; 133(14):144511. PubMed ID: 20950021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure prediction for cyclotrimethylene trinitramine (RDX) from first principles.
    Podeszwa R; Rice BM; Szalewicz K
    Phys Chem Chem Phys; 2009 Jul; 11(26):5512-8. PubMed ID: 19551222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial excess free energies of solid-liquid interfaces by molecular dynamics simulation and thermodynamic integration.
    Leroy F; Dos Santos DJ; Müller-Plathe F
    Macromol Rapid Commun; 2009 May; 30(9-10):864-70. PubMed ID: 21706670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Fully in Silico Melting Point Prediction Using Molecular Simulations.
    Zhang Y; Maginn EJ
    J Chem Theory Comput; 2013 Mar; 9(3):1592-9. PubMed ID: 26587620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the Frenkel-Ladd method to compute the free energy of solids: the Einstein molecule approach.
    Vega C; Noya EG
    J Chem Phys; 2007 Oct; 127(15):154113. PubMed ID: 17949138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting and superheating in solids with volume shrinkage at melting: a molecular dynamics study of silicon.
    Zhang Q; Li Q; Li M
    J Chem Phys; 2013 Jan; 138(4):044504. PubMed ID: 23387602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of the solid, liquid, and melting of 1-n-butyl-4-amino-1,2,4-triazolium bromide.
    Alavi S; Thompson DL
    J Phys Chem B; 2005 Sep; 109(38):18127-34. PubMed ID: 16853328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.