These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26661571)

  • 1. On the explanation of hysteresis in the adsorption of ammonia on graphitized thermal carbon black.
    Zeng Y; Do DD; Horikawa T; Nicholson D; Nakai K
    Phys Chem Chem Phys; 2016 Jan; 18(2):1163-71. PubMed ID: 26661571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Existence of ultrafine crevices and functional groups along the edge surfaces of graphitized thermal carbon black.
    Zeng Y; Do DD; Nicholson D
    Langmuir; 2015 Apr; 31(14):4196-204. PubMed ID: 25797845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A GCMC simulation and experimental study of krypton adsorption/desorption hysteresis on a graphite surface.
    Prasetyo L; Horikawa T; Phadungbut P; Johnathan Tan S; Do DD; Nicholson D
    J Colloid Interface Sci; 2016 Sep; 478():402-12. PubMed ID: 27343464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data.
    Do DD; Do HD
    J Phys Chem B; 2006 Sep; 110(35):17531-8. PubMed ID: 16942095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of potential models on the adsorption of ethane and ethylene on graphitized thermal carbon black. Study of two-dimensional critical temperature and isosteric heat versus loading.
    Do DD; Do HD
    Langmuir; 2004 Dec; 20(25):10889-99. PubMed ID: 15568838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interplay between molecular layering and clustering in adsorption of gases on graphitized thermal carbon black--spill-over phenomenon and the important role of strong sites.
    Do DD; Tan SL; Zeng Y; Fan C; Nguyen VT; Horikawa T; Nicholson D
    J Colloid Interface Sci; 2015 May; 446():98-113. PubMed ID: 25660710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explanation of the unusual peak of calorimetric heat in the adsorption of nitrogen, argon and methane on graphitized thermal carbon black.
    Wongkoblap A; Do DD; Nicholson D
    Phys Chem Chem Phys; 2008 Feb; 10(8):1106-13. PubMed ID: 18270611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of surface mediation on the adsorption isotherm and heat of adsorption of argon on graphitized thermal carbon black.
    Fan C; Birkett G; Do DD
    J Colloid Interface Sci; 2010 Feb; 342(2):485-92. PubMed ID: 19914630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the isosteric heat of adsorption of non-polar and polar fluids on highly graphitized carbon black.
    Horikawa T; Zeng Y; Do DD; Sotowa K; Alcántara Avila JR
    J Colloid Interface Sci; 2015 Feb; 439():1-6. PubMed ID: 25463168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption.
    Madani SH; Sedghi S; Biggs MJ; Pendleton P
    Chemphyschem; 2015 Dec; 16(18):3797-805. PubMed ID: 26538339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the anatomy of the adsorption heat versus loading as a function of temperature and adsorbate for a graphitic surface.
    Do DD; Nicholson D; Do HD
    J Colloid Interface Sci; 2008 Sep; 325(1):7-22. PubMed ID: 18571188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative simulation study of nitrogen and ammonia adsorption on graphitized and nongraphitized carbon blacks.
    Herrera LF; Do DD; Birkett GR
    J Colloid Interface Sci; 2008 Apr; 320(2):415-22. PubMed ID: 18258251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of ethylene on graphitized thermal carbon black and in slit pores: a computer simulation study.
    Do DD; Do HD
    Langmuir; 2004 Aug; 20(17):7103-16. PubMed ID: 15301494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of 1-site and 5-site models of methane on its adsorption on graphite and in graphitic slit pores.
    Do DD; Do HD
    J Phys Chem B; 2005 Oct; 109(41):19288-95. PubMed ID: 16853491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physisorption mechanism of SO
    Tan SJ; Do DD; Chew JW
    Phys Chem Chem Phys; 2020 Sep; 22(37):21463-21473. PubMed ID: 32945318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks.
    Kuchta B; Firlej L; Mohammadhosseini A; Boulet P; Beckner M; Romanos J; Pfeifer P
    J Am Chem Soc; 2012 Sep; 134(36):15130-7. PubMed ID: 22897685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of water in finite length carbon slit pore: comparison between computer simulation and experiment.
    Wongkoblap A; Do DD
    J Phys Chem B; 2007 Dec; 111(50):13949-56. PubMed ID: 18044864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of argon on homogeneous graphitized thermal carbon black and heterogeneous carbon surface.
    Do DD; Do HD
    J Colloid Interface Sci; 2005 Jul; 287(2):452-60. PubMed ID: 15925610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the microscopic origin of the temperature evolution of isosteric heat for methane adsorption on graphite.
    Liu L; Zhang H; Do DD; Nicholson D; Liu J
    Phys Chem Chem Phys; 2017 Oct; 19(39):27105-27115. PubMed ID: 28967005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of energy sites on adsorption of Lennard-Jones fluids and phase transition in carbon slit pore of finite length a computer simulation study.
    Wongkoblap A; Do DD
    J Colloid Interface Sci; 2006 May; 297(1):1-9. PubMed ID: 16297400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.