BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26661573)

  • 1. Mechanical Actuation Systems for the Phenotype Commitment of Stem Cell-Based Tendon and Ligament Tissue Substitutes.
    Govoni M; Muscari C; Lovecchio J; Guarnieri C; Giordano E
    Stem Cell Rev Rep; 2016 Apr; 12(2):189-201. PubMed ID: 26661573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Progress in Tendon and Ligament Tissue Engineering.
    Lim WL; Liau LL; Ng MH; Chowdhury SR; Law JX
    Tissue Eng Regen Med; 2019 Dec; 16(6):549-571. PubMed ID: 31824819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering.
    Silva M; Ferreira FN; Alves NM; Paiva MC
    J Nanobiotechnology; 2020 Jan; 18(1):23. PubMed ID: 32000800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration.
    Rinoldi C; Kijeńska-Gawrońska E; Khademhosseini A; Tamayol A; Swieszkowski W
    Adv Healthc Mater; 2021 Apr; 10(7):e2001305. PubMed ID: 33576158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do cells contribute to tendon and ligament biomechanics?
    Hammer N; Huster D; Fritsch S; Hädrich C; Koch H; Schmidt P; Sichting F; Wagner MF; Boldt A
    PLoS One; 2014; 9(8):e105037. PubMed ID: 25126746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancements in scaffold for treating ligament injuries; in vitro evaluation.
    Liu S; Al-Danakh A; Wang H; Sun Y; Wang L
    Biotechnol J; 2024 Jan; 19(1):e2300251. PubMed ID: 37974555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring the pore design of embroidered structures by melt electrowriting to enhance the cell alignment in scaffold-based tendon reconstruction.
    von Witzleben M; Hahn J; Richter RF; de Freitas B; Steyer E; Schütz K; Vater C; Bernhardt A; Elschner C; Gelinsky M
    Biomater Adv; 2024 Jan; 156():213708. PubMed ID: 38029698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell Sheet Technology: An Emerging Approach for Tendon and Ligament Tissue Engineering.
    Li Y; Deng T; Aili D; Chen Y; Zhu W; Liu Q
    Ann Biomed Eng; 2024 Feb; 52(2):141-152. PubMed ID: 37731091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A brief history of tendon and ligament bioreactors: Impact and future prospects.
    Dyment NA; Barrett JG; Awad HA; Bautista CA; Banes AJ; Butler DL
    J Orthop Res; 2020 Nov; 38(11):2318-2330. PubMed ID: 32579266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs.
    Kuo CK; Marturano JE; Tuan RS
    Sports Med Arthrosc Rehabil Ther Technol; 2010 Aug; 2():20. PubMed ID: 20727171
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Kataoka K; Kurimoto R; Tsutsumi H; Chiba T; Kato T; Shishido K; Kato M; Ito Y; Cho Y; Hoshi O; Mimata A; Sakamaki Y; Nakamichi R; Lotz MK; Naruse K; Asahara H
    Front Cell Dev Biol; 2020; 8():307. PubMed ID: 32671057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent Cyclic Stretch of Engineered Ligaments Drives Hierarchical Collagen Fiber Maturation in a Dose- and Organizational-Dependent Manner.
    Troop LD; Puetzer JL
    bioRxiv; 2024 Apr; ():. PubMed ID: 38645097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft bioreactor systems: a necessary step toward engineered MSK soft tissue?
    Dvorak N; Liu Z; Mouthuy PA
    Front Robot AI; 2024; 11():1287446. PubMed ID: 38711813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties of Compact Bone Defined by the Stress-Strain Curve Measured Using Uniaxial Tensile Test: A Concise Review and Practical Guide.
    Lin CY; Kang JH
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic biomaterials and nano-instructive tools as mediators of tendon mechanotransduction.
    Matos AM; Gonçalves AI; El Haj AJ; Gomes ME
    Nanoscale Adv; 2020 Jan; 2(1):140-148. PubMed ID: 36133967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development, use, and challenges of electromechanical tissue stimulation systems.
    Hu J; Anderson W; Hayes E; Strauss EA; Lang J; Bacos J; Simacek N; Vu HH; McCarty OJT; Kim H; Kang YA
    Artif Organs; 2024 Jun; ():. PubMed ID: 38887912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration.
    Youngstrom DW; Barrett JG
    Stem Cells Int; 2016; 2016():3919030. PubMed ID: 26839559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tendon Differentiation on Decellularized Extracellular Matrix Under Cyclic Loading.
    Youngstrom DW; Barrett JG
    Methods Mol Biol; 2016; 1502():195-202. PubMed ID: 27062597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges.
    Beldjilali-Labro M; Garcia Garcia A; Farhat F; Bedoui F; Grosset JF; Dufresne M; Legallais C
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29966303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driving cell response through deep learning, a study in simulated 3D cell cultures.
    Cortesi M; Giordano E
    Heliyon; 2024 May; 10(9):e29395. PubMed ID: 38699000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.