These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26662170)

  • 21. Lipophosphonoxins: new modular molecular structures with significant antibacterial properties.
    Rejman D; Rabatinová A; Pombinho AR; Kovačková S; Pohl R; Zborníková E; Kolář M; Bogdanová K; Nyč O; Sanderová H; Látal T; Bartůněk P; Krásný L
    J Med Chem; 2011 Nov; 54(22):7884-98. PubMed ID: 22007704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates.
    Wyszynski FJ; Lee SS; Yabe T; Wang H; Gomez-Escribano JP; Bibb MJ; Lee SJ; Davies GJ; Davis BG
    Nat Chem; 2012 May; 4(7):539-46. PubMed ID: 22717438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies.
    Seebald LM; Haratipour P; Jacobs MR; Bernstein HM; Kashemirov BA; McKenna CE; Imperiali B
    bioRxiv; 2023 Sep; ():. PubMed ID: 37786673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analogues of Muraymycin Nucleoside Antibiotics with Epimeric Uridine-Derived Core Structures.
    Spork AP; Koppermann S; Schier Née Wohnig S; Linder R; Ducho C
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30400295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel 5'-deoxy nucleosyl amino acid scaffolds for the synthesis of muraymycin analogues.
    Spork AP; Ducho C
    Org Biomol Chem; 2010 May; 8(10):2323-6. PubMed ID: 20386790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering nucleoside antibiotics toward the development of novel antimicrobial agents.
    Niu G; Li Z; Huang P; Tan H
    J Antibiot (Tokyo); 2019 Dec; 72(12):906-912. PubMed ID: 31501499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis.
    Winn M; Goss RJ; Kimura K; Bugg TD
    Nat Prod Rep; 2010 Feb; 27(2):279-304. PubMed ID: 20111805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of active-site inhibitors of MurG using a generalizable, high-throughput glycosyltransferase screen.
    Helm JS; Hu Y; Chen L; Gross B; Walker S
    J Am Chem Soc; 2003 Sep; 125(37):11168-9. PubMed ID: 16220917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A search for pyrophosphate mimics for the development of substrates and inhibitors of glycosyltransferases.
    Wang R; Steensma DH; Takaoka Y; Yun JW; Kajimoto T; Wong CH
    Bioorg Med Chem; 1997 Apr; 5(4):661-72. PubMed ID: 9158864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A convergent synthetic approach to the nucleoside-type liposidomycin antibiotics.
    Sarabia F; Martín-Ortiz L; López-Herrera FJ
    Org Lett; 2003 Oct; 5(21):3927-30. PubMed ID: 14535745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthetic Origin of the Atypical Stereochemistry in the Thioheptose Core of Albomycin Nucleoside Antibiotics.
    Ushimaru R; Liu HW
    J Am Chem Soc; 2019 Feb; 141(6):2211-2214. PubMed ID: 30673214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides.
    Luzhetskyy A; Vente A; Bechthold A
    Mol Biosyst; 2005 Jul; 1(2):117-26. PubMed ID: 16880973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of complex nucleoside antibiotics.
    Ichikawa S; Matsuda A
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):319-29. PubMed ID: 16247947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quinovosamycins: new tunicamycin-type antibiotics in which the α, β-1″,11'-linked N-acetylglucosamine residue is replaced by N-acetylquinovosamine.
    Price NP; Labeda DP; Naumann TA; Vermillion KE; Bowman MJ; Berhow MA; Metcalf WW; Bischoff KM
    J Antibiot (Tokyo); 2016 Aug; 69(8):637-46. PubMed ID: 27189123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stereochemical assignment and first synthesis of the core of miharamycin antibiotics.
    Marcelo F; Jiménez-Barbero J; Marrot J; Rauter AP; Sinaÿ P; Blériot Y
    Chemistry; 2008; 14(32):10066-73. PubMed ID: 18833553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Function-Oriented Synthesis: How to Design Simplified Analogues of Antibacterial Nucleoside Natural Products?
    Ichikawa S
    Chem Rec; 2016 Jun; 16(3):1106-15. PubMed ID: 27027613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database.
    Akune Y; Lin CH; Abrahams JL; Zhang J; Packer NH; Aoki-Kinoshita KF; Campbell MP
    Carbohydr Res; 2016 Aug; 431():56-63. PubMed ID: 27318307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on peptidyl nucleoside antibiotics: synthesis and antifungal evaluation of pyranosyl nucleoside analogs of nikkomycin.
    Stauffer CS; Fothergill AW; Rinaldi MG; Dutta A
    Future Med Chem; 2009 May; 1(2):379-89. PubMed ID: 21425974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.
    Tvaroška I
    Carbohydr Res; 2015 Feb; 403():38-47. PubMed ID: 25060837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleoside analogs and tuberculosis: new weapons against an old enemy.
    Ferrari V; Serpi M
    Future Med Chem; 2015; 7(3):291-314. PubMed ID: 25826361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.