These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26662183)

  • 21. Interaction of cryptogein with its binding sites in tobacco plasma membrane studied using the piezoelectric biosensor.
    Svozilová Z; Kasparovský T; Skládal P; Lochman J
    Anal Biochem; 2009 Jul; 390(2):115-20. PubMed ID: 19374882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cryptogein, a fungal elicitor, remodels the phenylpropanoid metabolism of tobacco cell suspension cultures in a calcium-dependent manner.
    Amelot N; Carrouche A; Danoun S; Bourque S; Haiech J; Pugin A; Ranjeva R; Grima-Pettenati J; Mazars C; Briere C
    Plant Cell Environ; 2011 Jan; 34(1):149-61. PubMed ID: 20946589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the cryptogein binding sites on plant plasma membranes.
    Bourque S; Binet MN; Ponchet M; Pugin A; Lebrun-Garcia A
    J Biol Chem; 1999 Dec; 274(49):34699-705. PubMed ID: 10574936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitric oxide (NO) as an intermediate in the cryptogein-induced hypersensitive response--a critical re-evaluation.
    Planchet E; Sonoda M; Zeier J; Kaiser WM
    Plant Cell Environ; 2006 Jan; 29(1):59-69. PubMed ID: 17086753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco.
    Wendehenne D; Lamotte O; Frachisse JM; Barbier-Brygoo H; Pugin A
    Plant Cell; 2002 Aug; 14(8):1937-51. PubMed ID: 12172032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cryptogein-induced transcriptional reprogramming in tobacco is light dependent.
    Hoeberichts FA; Davoine C; Vandorpe M; Morsa S; Ksas B; Stassen C; Triantaphylidès C; Van Breusegem F
    Plant Physiol; 2013 Sep; 163(1):263-75. PubMed ID: 23878079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NADPH oxidase-mediated reactive oxygen species production: subcellular localization and reassessment of its role in plant defense.
    Lherminier J; Elmayan T; Fromentin J; Elaraqui KT; Vesa S; Morel J; Verrier JL; Cailleteau B; Blein JP; Simon-Plas F
    Mol Plant Microbe Interact; 2009 Jul; 22(7):868-81. PubMed ID: 19522569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco.
    Stanislas T; Bouyssie D; Rossignol M; Vesa S; Fromentin J; Morel J; Pichereaux C; Monsarrat B; Simon-Plas F
    Mol Cell Proteomics; 2009 Sep; 8(9):2186-98. PubMed ID: 19525550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein.
    Lamotte O; Gould K; Lecourieux D; Sequeira-Legrand A; Lebrun-Garcia A; Durner J; Pugin A; Wendehenne D
    Plant Physiol; 2004 May; 135(1):516-29. PubMed ID: 15122020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of putative glutamate receptors in plant defence signaling and NO production.
    Vatsa P; Chiltz A; Bourque S; Wendehenne D; Garcia-Brugger A; Pugin A
    Biochimie; 2011 Dec; 93(12):2095-101. PubMed ID: 21524679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of microtubular cytoskeleton induced by cryptogein, an elicitor of hypersensitive response in tobacco cells.
    Binet MN; Humbert C; Lecourieux D; Vantard M; Pugin A
    Plant Physiol; 2001 Feb; 125(2):564-72. PubMed ID: 11161014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium- and Nitric Oxide-Dependent Nuclear Accumulation of Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase in Response to Long Chain Bases in Tobacco BY-2 Cells.
    Testard A; Da Silva D; Ormancey M; Pichereaux C; Pouzet C; Jauneau A; Grat S; Robe E; Brière C; Cotelle V; Mazars C; Thuleau P
    Plant Cell Physiol; 2016 Oct; 57(10):2221-2231. PubMed ID: 27585463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Constitutive expression of clathrin hub hinders elicitor-induced clathrin-mediated endocytosis and defense gene expression in plant cells.
    Adam T; Bouhidel K; Der C; Robert F; Najid A; Simon-Plas F; Leborgne-Castel N
    FEBS Lett; 2012 Sep; 586(19):3293-8. PubMed ID: 22796492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The elicitor cryptogein blocks glucose transport in tobacco cells.
    Bourque S; Lemoine R; Sequeira-Legrand A; Fayolle L; Delrot S; Pugin A
    Plant Physiol; 2002 Dec; 130(4):2177-87. PubMed ID: 12481101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo imaging of an elicitor-induced nitric oxide burst in tobacco.
    Foissner I; Wendehenne D; Langebartels C; Durner J
    Plant J; 2000 Sep; 23(6):817-24. PubMed ID: 10998192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CDC48 in plants and its emerging function in plant immunity.
    Inès D; Courty PE; Wendehenne D; Rosnoblet C
    Trends Plant Sci; 2024 Jul; 29(7):786-798. PubMed ID: 38218650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis and Secretion of Cryptogein, a Protein Elicitor Secreted by Phytophthora cryptogea.
    Tercé-Laforgue T; Huet JC; Ill JC
    Plant Physiol; 1992 Mar; 98(3):936-41. PubMed ID: 16668767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive oxygen species in signalling the transcriptional activation of WIPK expression in tobacco.
    Xu J; Yang KY; Yoo SJ; Liu Y; Ren D; Zhang S
    Plant Cell Environ; 2014 Jul; 37(7):1614-25. PubMed ID: 24392654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical synthesis, expression and mutagenesis of a gene encoding beta-cryptogein, an elicitin produced by Phytophthora cryptogea.
    O'Donohue MJ; Gousseau H; Huet JC; Tepfer D; Pernollet JC
    Plant Mol Biol; 1995 Feb; 27(3):577-86. PubMed ID: 7894020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological and proteomic approaches to evaluate the role of sterol binding in elicitin-induced resistance.
    Dokládal L; Oboril M; Stejskal K; Zdráhal Z; Ptácková N; Chaloupková R; Damborsky J; Kasparovsky T; Jeandroz S; Zd'árská M; Lochman J
    J Exp Bot; 2012 Mar; 63(5):2203-15. PubMed ID: 22223811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.