These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26662215)

  • 1. Flatbands in 2D boroxine-linked covalent organic frameworks.
    Wang RN; Zhang XR; Wang SF; Fu GS; Wang JL
    Phys Chem Chem Phys; 2016 Jan; 18(2):1258-64. PubMed ID: 26662215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional π-Conjugated Two-Dimensional Covalent Organic Frameworks.
    Babu HV; Bai MGM; Rajeswara Rao M
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11029-11060. PubMed ID: 30817118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic properties of two-dimensional covalent organic frameworks.
    Zhu P; Meunier V
    J Chem Phys; 2012 Dec; 137(24):244703. PubMed ID: 23277948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic, structural, and substrate effect properties of single-layer covalent organic frameworks.
    Liang L; Zhu P; Meunier V
    J Chem Phys; 2015 May; 142(18):184708. PubMed ID: 25978906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathways to the polymerization of boron monoxide dimer to give low-density porous materials containing six-membered boroxine rings.
    Zhang Z; Pu L; Li QS; King RB
    Inorg Chem; 2015 Mar; 54(6):2910-5. PubMed ID: 25710351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the Local Electronic Structure of a Single-Layer Covalent Organic Framework through Electronic Decoupling.
    Rizzo DJ; Dai Q; Bronner C; Veber G; Smith BJ; Matsumoto M; Thomas S; Nguyen GD; Forrester PR; Zhao W; Jørgensen JH; Dichtel WR; Fischer FR; Li H; Bredas JL; Crommie MF
    Nano Lett; 2020 Feb; 20(2):963-970. PubMed ID: 31910625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perfectly planar boronyl boroxine D3h B6O6: a boron oxide analog of boroxine and benzene.
    Li DZ; Bai H; Chen Q; Lu H; Zhai HJ; Li SD
    J Chem Phys; 2013 Jun; 138(24):244304. PubMed ID: 23822241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transformation in two-dimensional covalent organic frameworks under compressive loading.
    Zhang J
    Phys Chem Chem Phys; 2018 Nov; 20(46):29462-29471. PubMed ID: 30456404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emissive Single-Crystalline Boroxine-Linked Colloidal Covalent Organic Frameworks.
    Evans AM; Castano I; Brumberg A; Parent LR; Corcos AR; Li RL; Flanders NC; Gosztola DJ; Gianneschi NC; Schaller RD; Dichtel WR
    J Am Chem Soc; 2019 Dec; 141(50):19728-19735. PubMed ID: 31743009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structures and bonding of graphyne sheet and its BN analog.
    Zhou J; Lv K; Wang Q; Chen XS; Sun Q; Jena P
    J Chem Phys; 2011 May; 134(17):174701. PubMed ID: 21548700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin porphyrin and tetra-indole covalent organic frameworks for organic electronics applications.
    Ziogos OG; Blanco I; Blumberger J
    J Chem Phys; 2020 Jul; 153(4):044702. PubMed ID: 32752720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple molecular design for tunable two-dimensional imine covalent organic frameworks for optoelectronic applications.
    Yadav VK; Mir SH; Mishra V; Gopakumar TG; Singh JK
    Phys Chem Chem Phys; 2020 Sep; 22(37):21360-21368. PubMed ID: 32940303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercalation of first row transition metals inside covalent-organic frameworks (COFs): a strategy to fine tune the electronic properties of porous crystalline materials.
    Pakhira S; Mendoza-Cortes JL
    Phys Chem Chem Phys; 2019 Apr; 21(17):8785-8796. PubMed ID: 30968866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the similarity of single-layer covalent organic frameworks using electronic structure calculations.
    Raptakis A; Croy A; Dianat A; Gutierrez R; Cuniberti G
    RSC Adv; 2022 Apr; 12(20):12283-12291. PubMed ID: 35480357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyarylether-Based 2D Covalent-Organic Frameworks with In-Plane D-A Structures and Tunable Energy Levels for Energy Storage.
    Li N; Jiang K; Rodríguez-Hernández F; Mao H; Han S; Fu X; Zhang J; Yang C; Ke C; Zhuang X
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104898. PubMed ID: 34957678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of an Antiferromagnetic Mott Insulating Phase in Hexagonal π-Conjugated Covalent Organic Frameworks.
    Thomas S; Li H; Bredas JL
    Adv Mater; 2019 Apr; 31(17):e1900355. PubMed ID: 30847999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling Electronic Properties in Metal-Phthalocyanine-Based Pyrazine-Linked Conjugated Two-Dimensional Covalent Organic Frameworks.
    Wang M; Ballabio M; Wang M; Lin HH; Biswal BP; Han X; Paasch S; Brunner E; Liu P; Chen M; Bonn M; Heine T; Zhou S; Cánovas E; Dong R; Feng X
    J Am Chem Soc; 2019 Oct; 141(42):16810-16816. PubMed ID: 31557002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Hydrostability and Carbon Dioxide Capture of Boroxine-Linked Covalent Organic Frameworks by One-Pot Oligoamine Modification.
    Jia C; Liang RR; Gan SX; Jiang SY; Qi QY; Zhao X
    Chemistry; 2023 May; 29(29):e202300186. PubMed ID: 36859630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Triazine-Boron Two-Dimensional Covalent Organic Frameworks: Synthesis, Characterization, and DFT Approach to Layer Interaction Energies.
    Gontarczyk K; Bury W; Serwatowski J; Wieciński P; Woźniak K; Durka K; Luliński S
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31129-31141. PubMed ID: 28832104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.