These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Pathways to the polymerization of boron monoxide dimer to give low-density porous materials containing six-membered boroxine rings. Zhang Z; Pu L; Li QS; King RB Inorg Chem; 2015 Mar; 54(6):2910-5. PubMed ID: 25710351 [TBL] [Abstract][Full Text] [Related]
6. Revealing the Local Electronic Structure of a Single-Layer Covalent Organic Framework through Electronic Decoupling. Rizzo DJ; Dai Q; Bronner C; Veber G; Smith BJ; Matsumoto M; Thomas S; Nguyen GD; Forrester PR; Zhao W; Jørgensen JH; Dichtel WR; Fischer FR; Li H; Bredas JL; Crommie MF Nano Lett; 2020 Feb; 20(2):963-970. PubMed ID: 31910625 [TBL] [Abstract][Full Text] [Related]
7. Perfectly planar boronyl boroxine D3h B6O6: a boron oxide analog of boroxine and benzene. Li DZ; Bai H; Chen Q; Lu H; Zhai HJ; Li SD J Chem Phys; 2013 Jun; 138(24):244304. PubMed ID: 23822241 [TBL] [Abstract][Full Text] [Related]
8. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917 [TBL] [Abstract][Full Text] [Related]
13. A simple molecular design for tunable two-dimensional imine covalent organic frameworks for optoelectronic applications. Yadav VK; Mir SH; Mishra V; Gopakumar TG; Singh JK Phys Chem Chem Phys; 2020 Sep; 22(37):21360-21368. PubMed ID: 32940303 [TBL] [Abstract][Full Text] [Related]
14. Intercalation of first row transition metals inside covalent-organic frameworks (COFs): a strategy to fine tune the electronic properties of porous crystalline materials. Pakhira S; Mendoza-Cortes JL Phys Chem Chem Phys; 2019 Apr; 21(17):8785-8796. PubMed ID: 30968866 [TBL] [Abstract][Full Text] [Related]
15. Exploring the similarity of single-layer covalent organic frameworks using electronic structure calculations. Raptakis A; Croy A; Dianat A; Gutierrez R; Cuniberti G RSC Adv; 2022 Apr; 12(20):12283-12291. PubMed ID: 35480357 [TBL] [Abstract][Full Text] [Related]
16. Polyarylether-Based 2D Covalent-Organic Frameworks with In-Plane D-A Structures and Tunable Energy Levels for Energy Storage. Li N; Jiang K; Rodríguez-Hernández F; Mao H; Han S; Fu X; Zhang J; Yang C; Ke C; Zhuang X Adv Sci (Weinh); 2022 Feb; 9(6):e2104898. PubMed ID: 34957678 [TBL] [Abstract][Full Text] [Related]
17. Emergence of an Antiferromagnetic Mott Insulating Phase in Hexagonal π-Conjugated Covalent Organic Frameworks. Thomas S; Li H; Bredas JL Adv Mater; 2019 Apr; 31(17):e1900355. PubMed ID: 30847999 [TBL] [Abstract][Full Text] [Related]
18. Unveiling Electronic Properties in Metal-Phthalocyanine-Based Pyrazine-Linked Conjugated Two-Dimensional Covalent Organic Frameworks. Wang M; Ballabio M; Wang M; Lin HH; Biswal BP; Han X; Paasch S; Brunner E; Liu P; Chen M; Bonn M; Heine T; Zhou S; Cánovas E; Dong R; Feng X J Am Chem Soc; 2019 Oct; 141(42):16810-16816. PubMed ID: 31557002 [TBL] [Abstract][Full Text] [Related]
19. Boosting Hydrostability and Carbon Dioxide Capture of Boroxine-Linked Covalent Organic Frameworks by One-Pot Oligoamine Modification. Jia C; Liang RR; Gan SX; Jiang SY; Qi QY; Zhao X Chemistry; 2023 May; 29(29):e202300186. PubMed ID: 36859630 [TBL] [Abstract][Full Text] [Related]