These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 26662869)
1. Graphite-Nanoplate-Coated Bi2 S3 Composite with High-Volume Energy Density and Excellent Cycle Life for Room-Temperature Sodium-Sulfide Batteries. Li WJ; Han C; Chou SL; Wang JZ; Li Z; Kang YM; Liu HK; Dou SX Chemistry; 2016 Jan; 22(2):590-7. PubMed ID: 26662869 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Lithium-Ion Storage Capability of a Bismuth Sulfide/Graphene Oxide/Poly(3,4-ethylenedioxythiophene) Composite. Mukkabla R; Deepa M; Srivastava AK Chemphyschem; 2015 Oct; 16(15):3242-53. PubMed ID: 26247745 [TBL] [Abstract][Full Text] [Related]
3. Ultrathin-Walled Bi Zou Z; Wang Q; Zhu K; Ye K; Wang G; Cao D; Yan J Small; 2022 Apr; 18(13):e2106673. PubMed ID: 35132814 [TBL] [Abstract][Full Text] [Related]
4. Sulfur-Deficient Bismuth Sulfide/Nitrogen-Doped Carbon Nanofibers as Advanced Free-Standing Electrode for Asymmetric Supercapacitors. Zong W; Lai F; He G; Feng J; Wang W; Lian R; Miao YE; Wang GC; Parkin IP; Liu T Small; 2018 Aug; 14(32):e1801562. PubMed ID: 30003678 [TBL] [Abstract][Full Text] [Related]
5. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. Xu J; Shui J; Wang J; Wang M; Liu HK; Dou SX; Jeon IY; Seo JM; Baek JB; Dai L ACS Nano; 2014 Oct; 8(10):10920-30. PubMed ID: 25290080 [TBL] [Abstract][Full Text] [Related]
6. Rich Self-Generated Phase Boundaries of Heterostructured VS Fan R; Zhao C; Ma J; Wu J; He T; Dong Y; Dai J; Cai Y Small; 2022 Nov; 18(45):e2205175. PubMed ID: 36156854 [TBL] [Abstract][Full Text] [Related]
7. Hierarchical LiFePO4/C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries. Wei W; Chen D; Wang R; Guo L Nanotechnology; 2012 Nov; 23(47):475401. PubMed ID: 23117189 [TBL] [Abstract][Full Text] [Related]
8. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries. Chen L; Liu Y; Zhang F; Liu C; Shaw LL ACS Appl Mater Interfaces; 2015 Nov; 7(46):25748-56. PubMed ID: 26529481 [TBL] [Abstract][Full Text] [Related]
9. One-Step In Situ Preparation of Polymeric Selenium Sulfide Composite as a Cathode Material for Enhanced Sodium/Potassium Storage. Zhang W; Wang H; Zhang N; Liu H; Chen Z; Zhang L; Guo S; Li D; Xu J ACS Appl Mater Interfaces; 2019 Aug; 11(33):29807-29813. PubMed ID: 31361119 [TBL] [Abstract][Full Text] [Related]
10. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material. Dirican M; Lu Y; Ge Y; Yildiz O; Zhang X ACS Appl Mater Interfaces; 2015 Aug; 7(33):18387-96. PubMed ID: 26252051 [TBL] [Abstract][Full Text] [Related]
11. Sodium-Rich Ferric Pyrophosphate Cathode for Stationary Room-Temperature Sodium-Ion Batteries. Shen B; Xu M; Niu Y; Han J; Lu S; Jiang J; Li Y; Dai C; Hu L; Li C ACS Appl Mater Interfaces; 2018 Jan; 10(1):502-508. PubMed ID: 29231706 [TBL] [Abstract][Full Text] [Related]
12. A physical pulverization strategy for preparing a highly active composite of CoOx and crushed graphite for lithium-oxygen batteries. Ming J; Kwak WJ; Park JB; Shin CD; Lu J; Curtiss L; Amine K; Sun YK Chemphyschem; 2014 Jul; 15(10):2070-6. PubMed ID: 24962019 [TBL] [Abstract][Full Text] [Related]
14. Enhanced cycling stability of lithium sulfur batteries using sulfur-polyaniline-graphene nanoribbon composite cathodes. Li L; Ruan G; Peng Z; Yang Y; Fei H; Raji AR; Samuel EL; Tour JM ACS Appl Mater Interfaces; 2014 Sep; 6(17):15033-9. PubMed ID: 25141233 [TBL] [Abstract][Full Text] [Related]
15. Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. Zhao Q; Hu Y; Zhang K; Chen J Inorg Chem; 2014 Sep; 53(17):9000-5. PubMed ID: 25119141 [TBL] [Abstract][Full Text] [Related]
16. FeSb₂-Al₂O₃-C nanocomposite anodes for lithium-ion batteries. Allcorn E; Manthiram A ACS Appl Mater Interfaces; 2014 Jul; 6(14):10886-91. PubMed ID: 24661574 [TBL] [Abstract][Full Text] [Related]
17. Controllable extracellular biosynthesis of bismuth sulfide nanostructure by sulfate-reducing bacteria in water-oil two-phase system. Yue L; Wu Y; Liu X; Xin B; Chen S Biotechnol Prog; 2014; 30(4):960-6. PubMed ID: 24616368 [TBL] [Abstract][Full Text] [Related]
18. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
19. Reinforced Conductive Confinement of Sulfur for Robust and High-Performance Lithium-Sulfur Batteries. Lai C; Wu Z; Gu X; Wang C; Xi K; Kumar RV; Zhang S ACS Appl Mater Interfaces; 2015 Nov; 7(43):23885-92. PubMed ID: 26470838 [TBL] [Abstract][Full Text] [Related]
20. Zinc Telluride as Electrochemical Storage Material for High-Performance Sodium-Ion Batteries. Ko J; So S; Hur J J Nanosci Nanotechnol; 2021 Jul; 21(7):3835-3841. PubMed ID: 33715701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]