BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 26663222)

  • 1. Target-selectivity of parvalbumin-positive interneurons in layer II of medial entorhinal cortex in normal and epileptic animals.
    Armstrong C; Wang J; Yeun Lee S; Broderick J; Bezaire MJ; Lee SH; Soltesz I
    Hippocampus; 2016 Jun; 26(6):779-93. PubMed ID: 26663222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target-selective GABAergic control of entorhinal cortex output.
    Varga C; Lee SY; Soltesz I
    Nat Neurosci; 2010 Jul; 13(7):822-4. PubMed ID: 20512133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of cholecystokinin-containing terminals in temporal lobe epilepsy.
    Sun C; Sun J; Erisir A; Kapur J
    Neurobiol Dis; 2014 Feb; 62():44-55. PubMed ID: 24051276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy.
    Wyeth MS; Zhang N; Mody I; Houser CR
    J Neurosci; 2010 Jun; 30(26):8993-9006. PubMed ID: 20592220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus.
    Wittner L; Maglóczky Z; Borhegyi Z; Halász P; Tóth S; Eross L; Szabó Z; Freund TF
    Neuroscience; 2001; 108(4):587-600. PubMed ID: 11738496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy.
    Duveau V; Madhusudan A; Caleo M; Knuesel I; Fritschy JM
    Hippocampus; 2011 Sep; 21(9):935-44. PubMed ID: 20865728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vulnerability of cholecystokinin-expressing GABAergic interneurons in the unilateral intrahippocampal kainate mouse model of temporal lobe epilepsy.
    Kang YJ; Clement EM; Park IH; Greenfield LJ; Smith BN; Lee SH
    Exp Neurol; 2021 Aug; 342():113724. PubMed ID: 33915166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy.
    Sun C; Mtchedlishvili Z; Bertram EH; Erisir A; Kapur J
    J Comp Neurol; 2007 Feb; 500(5):876-93. PubMed ID: 17177260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus.
    Acsády L; Katona I; Martínez-Guijarro FJ; Buzsáki G; Freund TF
    J Neurosci; 2000 Sep; 20(18):6907-19. PubMed ID: 10995835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domestic pig.
    Abrahám H; Tóth Z; Seress L
    Hippocampus; 2004; 14(3):385-401. PubMed ID: 15132437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus.
    Arellano JI; Muñoz A; Ballesteros-Yáñez I; Sola RG; DeFelipe J
    Brain; 2004 Jan; 127(Pt 1):45-64. PubMed ID: 14534159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex in a model of temporal lobe epilepsy.
    Kumar SS; Buckmaster PS
    J Neurosci; 2006 Apr; 26(17):4613-23. PubMed ID: 16641241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The GABAergic septohippocampal pathway in control and reeler mice: target specificity and termination onto Reelin-expressing interneurons.
    Pascual M; Pérez-Sust P; Soriano E
    Mol Cell Neurosci; 2004 Apr; 25(4):679-91. PubMed ID: 15080896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic Remodeling of Entorhinal Input Contributes to an Aberrant Hippocampal Network in Temporal Lobe Epilepsy.
    Janz P; Savanthrapadian S; Häussler U; Kilias A; Nestel S; Kretz O; Kirsch M; Bartos M; Egert U; Haas CA
    Cereb Cortex; 2017 Mar; 27(3):2348-2364. PubMed ID: 27073230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain.
    Marsicano G; Lutz B
    Eur J Neurosci; 1999 Dec; 11(12):4213-25. PubMed ID: 10594647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of focal cortical dysplasia with balloon cells by layer-specific markers: Evidence for differential vulnerability of interneurons.
    Nakagawa JM; Donkels C; Fauser S; Schulze-Bonhage A; Prinz M; Zentner J; Haas CA
    Epilepsia; 2017 Apr; 58(4):635-645. PubMed ID: 28206669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic responses in superficial layers of medial entorhinal cortex from rats with kainate-induced epilepsy.
    Tolner EA; Frahm C; Metzger R; Gorter JA; Witte OW; Lopes da Silva FH; Heinemann U
    Neurobiol Dis; 2007 May; 26(2):419-38. PubMed ID: 17350275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABA bouton subpopulations in the human dentate gyrus are differentially altered in mesial temporal lobe epilepsy.
    Alhourani A; Fish KN; Wozny TA; Sudhakar V; Hamilton RL; Richardson RM
    J Neurophysiol; 2020 Jan; 123(1):392-406. PubMed ID: 31800363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TIMP-1 inhibits the proteolytic processing of Reelin in experimental epilepsy.
    Tinnes S; Ringwald J; Haas CA
    FASEB J; 2013 Jul; 27(7):2542-52. PubMed ID: 23493620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy.
    Knopp A; Frahm C; Fidzinski P; Witte OW; Behr J
    Brain; 2008 Jun; 131(Pt 6):1516-27. PubMed ID: 18504292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.