These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 26663222)
1. Target-selectivity of parvalbumin-positive interneurons in layer II of medial entorhinal cortex in normal and epileptic animals. Armstrong C; Wang J; Yeun Lee S; Broderick J; Bezaire MJ; Lee SH; Soltesz I Hippocampus; 2016 Jun; 26(6):779-93. PubMed ID: 26663222 [TBL] [Abstract][Full Text] [Related]
2. Target-selective GABAergic control of entorhinal cortex output. Varga C; Lee SY; Soltesz I Nat Neurosci; 2010 Jul; 13(7):822-4. PubMed ID: 20512133 [TBL] [Abstract][Full Text] [Related]
3. Loss of cholecystokinin-containing terminals in temporal lobe epilepsy. Sun C; Sun J; Erisir A; Kapur J Neurobiol Dis; 2014 Feb; 62():44-55. PubMed ID: 24051276 [TBL] [Abstract][Full Text] [Related]
4. Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. Wyeth MS; Zhang N; Mody I; Houser CR J Neurosci; 2010 Jun; 30(26):8993-9006. PubMed ID: 20592220 [TBL] [Abstract][Full Text] [Related]
5. Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus. Wittner L; Maglóczky Z; Borhegyi Z; Halász P; Tóth S; Eross L; Szabó Z; Freund TF Neuroscience; 2001; 108(4):587-600. PubMed ID: 11738496 [TBL] [Abstract][Full Text] [Related]
6. Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy. Duveau V; Madhusudan A; Caleo M; Knuesel I; Fritschy JM Hippocampus; 2011 Sep; 21(9):935-44. PubMed ID: 20865728 [TBL] [Abstract][Full Text] [Related]
7. Vulnerability of cholecystokinin-expressing GABAergic interneurons in the unilateral intrahippocampal kainate mouse model of temporal lobe epilepsy. Kang YJ; Clement EM; Park IH; Greenfield LJ; Smith BN; Lee SH Exp Neurol; 2021 Aug; 342():113724. PubMed ID: 33915166 [TBL] [Abstract][Full Text] [Related]
8. Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. Sun C; Mtchedlishvili Z; Bertram EH; Erisir A; Kapur J J Comp Neurol; 2007 Feb; 500(5):876-93. PubMed ID: 17177260 [TBL] [Abstract][Full Text] [Related]
9. Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. Acsády L; Katona I; Martínez-Guijarro FJ; Buzsáki G; Freund TF J Neurosci; 2000 Sep; 20(18):6907-19. PubMed ID: 10995835 [TBL] [Abstract][Full Text] [Related]
10. A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domestic pig. Abrahám H; Tóth Z; Seress L Hippocampus; 2004; 14(3):385-401. PubMed ID: 15132437 [TBL] [Abstract][Full Text] [Related]
11. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Arellano JI; Muñoz A; Ballesteros-Yáñez I; Sola RG; DeFelipe J Brain; 2004 Jan; 127(Pt 1):45-64. PubMed ID: 14534159 [TBL] [Abstract][Full Text] [Related]
12. Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex in a model of temporal lobe epilepsy. Kumar SS; Buckmaster PS J Neurosci; 2006 Apr; 26(17):4613-23. PubMed ID: 16641241 [TBL] [Abstract][Full Text] [Related]
13. The GABAergic septohippocampal pathway in control and reeler mice: target specificity and termination onto Reelin-expressing interneurons. Pascual M; Pérez-Sust P; Soriano E Mol Cell Neurosci; 2004 Apr; 25(4):679-91. PubMed ID: 15080896 [TBL] [Abstract][Full Text] [Related]
14. Synaptic Remodeling of Entorhinal Input Contributes to an Aberrant Hippocampal Network in Temporal Lobe Epilepsy. Janz P; Savanthrapadian S; Häussler U; Kilias A; Nestel S; Kretz O; Kirsch M; Bartos M; Egert U; Haas CA Cereb Cortex; 2017 Mar; 27(3):2348-2364. PubMed ID: 27073230 [TBL] [Abstract][Full Text] [Related]
15. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Marsicano G; Lutz B Eur J Neurosci; 1999 Dec; 11(12):4213-25. PubMed ID: 10594647 [TBL] [Abstract][Full Text] [Related]
16. Characterization of focal cortical dysplasia with balloon cells by layer-specific markers: Evidence for differential vulnerability of interneurons. Nakagawa JM; Donkels C; Fauser S; Schulze-Bonhage A; Prinz M; Zentner J; Haas CA Epilepsia; 2017 Apr; 58(4):635-645. PubMed ID: 28206669 [TBL] [Abstract][Full Text] [Related]
17. Synaptic responses in superficial layers of medial entorhinal cortex from rats with kainate-induced epilepsy. Tolner EA; Frahm C; Metzger R; Gorter JA; Witte OW; Lopes da Silva FH; Heinemann U Neurobiol Dis; 2007 May; 26(2):419-38. PubMed ID: 17350275 [TBL] [Abstract][Full Text] [Related]
18. GABA bouton subpopulations in the human dentate gyrus are differentially altered in mesial temporal lobe epilepsy. Alhourani A; Fish KN; Wozny TA; Sudhakar V; Hamilton RL; Richardson RM J Neurophysiol; 2020 Jan; 123(1):392-406. PubMed ID: 31800363 [TBL] [Abstract][Full Text] [Related]
19. TIMP-1 inhibits the proteolytic processing of Reelin in experimental epilepsy. Tinnes S; Ringwald J; Haas CA FASEB J; 2013 Jul; 27(7):2542-52. PubMed ID: 23493620 [TBL] [Abstract][Full Text] [Related]
20. Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy. Knopp A; Frahm C; Fidzinski P; Witte OW; Behr J Brain; 2008 Jun; 131(Pt 6):1516-27. PubMed ID: 18504292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]