BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26663480)

  • 1. STEM tomography reveals that the canalicular system and α-granules remain separate compartments during early secretion stages in blood platelets.
    Pokrovskaya ID; Aronova MA; Kamykowski JA; Prince AA; Hoyne JD; Calco GN; Kuo BC; He Q; Leapman RD; Storrie B
    J Thromb Haemost; 2016 Mar; 14(3):572-84. PubMed ID: 26663480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNARE-dependent membrane fusion initiates α-granule matrix decondensation in mouse platelets.
    Pokrovskaya ID; Joshi S; Tobin M; Desai R; Aronova MA; Kamykowski JA; Zhang G; Whiteheart SW; Leapman RD; Storrie B
    Blood Adv; 2018 Nov; 2(21):2947-2958. PubMed ID: 30401752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platelet secretory behaviour: as diverse as the granules … or not?
    Heijnen H; van der Sluijs P
    J Thromb Haemost; 2015 Dec; 13(12):2141-51. PubMed ID: 26391322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platelet dense granule membranes contain both granulophysin and P-selectin (GMP-140).
    Israels SJ; Gerrard JM; Jacques YV; McNicol A; Cham B; Nishibori M; Bainton DF
    Blood; 1992 Jul; 80(1):143-52. PubMed ID: 1377048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The secretory pathway of bovine platelets.
    White JG
    Blood; 1987 Mar; 69(3):878-85. PubMed ID: 3814820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The platelet interior revisited: electron tomography reveals tubular alpha-granule subtypes.
    van Nispen tot Pannerden H; de Haas F; Geerts W; Posthuma G; van Dijk S; Heijnen HF
    Blood; 2010 Aug; 116(7):1147-56. PubMed ID: 20439620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cellular basis of platelet secretion: Emerging structure/function relationships.
    Yadav S; Storrie B
    Platelets; 2017 Mar; 28(2):108-118. PubMed ID: 28010140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of compound granules from different types of secretory organelles in human platelets (dense granules and alpha-granules). A cryofixation/-substitution study using serial sections.
    Morgenstern E
    Eur J Cell Biol; 1995 Oct; 68(2):183-90. PubMed ID: 8575464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platelet alpha-granule and plasma membrane share two new components: CD9 and PECAM-1.
    Cramer EM; Berger G; Berndt MC
    Blood; 1994 Sep; 84(6):1722-30. PubMed ID: 8080982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for an alternative mechanism of human platelet secretion involving peripheralization of secretory granules and formation of membrane-associated multivesicular structures.
    Polasek J; Richardson M; Moore MA; Blajchman MA
    Thromb Res; 1987 Mar; 45(6):771-82. PubMed ID: 3590102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the serum- and glucocorticoid-inducible kinase 1 on platelet dense granule biogenesis and secretion.
    Walker B; Schmid E; Russo A; Schmidt EM; Burk O; Münzer P; Velic A; Macek B; Schaller M; Schwab M; Seabra MC; Gawaz M; Lang F; Borst O
    J Thromb Haemost; 2015 Jul; 13(7):1325-34. PubMed ID: 25944668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further studies of the secretory pathway in thrombin-stimulated human platelets.
    White JG; Krumwiede M
    Blood; 1987 Apr; 69(4):1196-203. PubMed ID: 3103715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha-granule pool of glycoprotein IIb-IIIa in normal and pathologic platelets and megakaryocytes.
    Cramer EM; Savidge GF; Vainchenker W; Berndt MC; Pidard D; Caen JP; Massé JM; Breton-Gorius J
    Blood; 1990 Mar; 75(6):1220-7. PubMed ID: 2310822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The actin cytoskeleton differentially regulates platelet alpha-granule and dense-granule secretion.
    Flaumenhaft R; Dilks JR; Rozenvayn N; Monahan-Earley RA; Feng D; Dvorak AM
    Blood; 2005 May; 105(10):3879-87. PubMed ID: 15671445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of α-granule contents during platelet activation.
    Smith CW
    Platelets; 2022 May; 33(4):491-502. PubMed ID: 34569425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-granule biogenesis: from disease to discovery.
    Chen CH; Lo RW; Urban D; Pluthero FG; Kahr WH
    Platelets; 2017 Mar; 28(2):147-154. PubMed ID: 28277061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D ultrastructural analysis of α-granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets.
    Pokrovskaya ID; Yadav S; Rao A; McBride E; Kamykowski JA; Zhang G; Aronova MA; Leapman RD; Storrie B
    Res Pract Thromb Haemost; 2020 Jan; 4(1):72-85. PubMed ID: 31989087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular distribution of 3 functional platelet SNARE proteins: human cellubrevin, SNAP-23, and syntaxin 2.
    Feng D; Crane K; Rozenvayn N; Dvorak AM; Flaumenhaft R
    Blood; 2002 Jun; 99(11):4006-14. PubMed ID: 12010801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of human platelet granules by structured illumination laser fluorescence microscopy.
    Pluthero FG; Kahr WHA
    Platelets; 2023 Dec; 34(1):2157808. PubMed ID: 36572649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of platelet osteonectin at the internal face of the alpha-granule membranes in platelets and megakaryocytes.
    Breton-Gorius J; Clezardin P; Guichard J; Debili N; Malaval L; Vainchenker W; Cramer EM; Delmas PD
    Blood; 1992 Feb; 79(4):936-41. PubMed ID: 1737102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.