These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26663556)

  • 1. Harnessing Deformation to Switch On and Off the Propagation of Sound.
    Babaee S; Viard N; Wang P; Fang NX; Bertoldi K
    Adv Mater; 2016 Feb; 28(8):1631-5. PubMed ID: 26663556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing buckling to design tunable locally resonant acoustic metamaterials.
    Wang P; Casadei F; Shan S; Weaver JC; Bertoldi K
    Phys Rev Lett; 2014 Jul; 113(1):014301. PubMed ID: 25032927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sharkskin-Inspired Magnetoactive Reconfigurable Acoustic Metamaterials.
    Lee KH; Yu K; Al Ba'ba'a H; Xin A; Feng Z; Wang Q
    Research (Wash D C); 2020; 2020():4825185. PubMed ID: 32110778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Order Asymmetric Acoustic Metamaterials with Broad Bandgaps at Subwavelength Scales.
    Wang X; Chen W; Li S
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-controlled wave propagation in hyperelastic media.
    Xin F; Lu TJ
    Sci Rep; 2017 Aug; 7(1):7581. PubMed ID: 28790384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding at the Microscale: Enabling Multifunctional 3D Origami-Architected Metamaterials.
    Lin Z; Novelino LS; Wei H; Alderete NA; Paulino GH; Espinosa HD; Krishnaswamy S
    Small; 2020 Sep; 16(35):e2002229. PubMed ID: 32715617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption.
    Matlack KH; Bauhofer A; Krödel S; Palermo A; Daraio C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8386-90. PubMed ID: 27410042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially Programmable Architected Materials Inspired by the Metallurgical Phase Engineering.
    Liu C; Pham MS
    Adv Mater; 2024 Feb; 36(8):e2305846. PubMed ID: 37714519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable origami-inspired acoustic waveguides.
    Babaee S; Overvelde JT; Chen ER; Tournat V; Bertoldi K
    Sci Adv; 2016 Nov; 2(11):e1601019. PubMed ID: 28138527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic metamaterials with circular sector cavities and programmable densities.
    Akl W; Elsabbagh A; Baz A
    J Acoust Soc Am; 2012 Oct; 132(4):2857-65. PubMed ID: 23039552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface.
    Guo X; Gusev VE; Tournat V; Deng B; Bertoldi K
    Phys Rev E; 2019 May; 99(5-1):052209. PubMed ID: 31212504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances.
    Colombi A; Roux P; Guenneau S; Gueguen P; Craster RV
    Sci Rep; 2016 Jan; 6():19238. PubMed ID: 26750489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cnoidal wave propagation in an elastic metamaterial.
    Mo C; Singh J; Raney JR; Purohit PK
    Phys Rev E; 2019 Jul; 100(1-1):013001. PubMed ID: 31499870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microporous and Flexible Framework Acoustic Metamaterials for Sound Attenuation and Contrast Agent Applications.
    Miller QRS; Nune SK; Schaef HT; Jung KW; Denslow KM; Prowant MS; Martin PF; McGrail BP
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44226-44230. PubMed ID: 30543403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architected Materials with Ultra-Low Porosity for Vibration Control.
    Javid F; Wang P; Shanian A; Bertoldi K
    Adv Mater; 2016 Jul; 28(28):5943-8. PubMed ID: 27165948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time domain characteristics of wave motion in dispersive and anisotropic continuum acoustic metamaterials.
    Wang Z; Zhou X
    J Acoust Soc Am; 2016 Dec; 140(6):4276. PubMed ID: 28039989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing Geometric Frustration to Form Band Gaps in Acoustic Channel Lattices.
    Wang P; Zheng Y; Fernandes MC; Sun Y; Xu K; Sun S; Kang SH; Tournat V; Bertoldi K
    Phys Rev Lett; 2017 Feb; 118(8):084302. PubMed ID: 28282189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials.
    Fang X; Wen J; Bonello B; Yin J; Yu D
    Nat Commun; 2017 Nov; 8(1):1288. PubMed ID: 29101396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials.
    Hirsekorn M; Delsanto PP; Batra NK; Matic P
    Ultrasonics; 2004 Apr; 42(1-9):231-5. PubMed ID: 15047290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials.
    Zhu X; Li K; Zhang P; Zhu J; Zhang J; Tian C; Liu S
    Nat Commun; 2016 May; 7():11731. PubMed ID: 27198887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.