These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26663633)

  • 1. Vacancy-Engineered Nanoceria: Enzyme Mimetic Hotspots for the Degradation of Nerve Agents.
    Vernekar AA; Das T; Mugesh G
    Angew Chem Int Ed Engl; 2016 Jan; 55(4):1412-6. PubMed ID: 26663633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrogation of the Substrate Profile and Catalytic Properties of the Phosphotriesterase from Sphingobium sp. Strain TCM1: An Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants and Plasticizers.
    Xiang DF; Bigley AN; Ren Z; Xue H; Hull KG; Romo D; Raushel FM
    Biochemistry; 2015 Dec; 54(51):7539-49. PubMed ID: 26629649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Cyclodextrin Stabilized Nanoceria for Hydrolytic Cleavage of Paraoxon in Aqueous and Cationic Micellar Media.
    Miri P; Karbhal I; Satnami ML; Jena VK; Ghosh S
    ACS Appl Bio Mater; 2023 Apr; 6(4):1488-1494. PubMed ID: 36939183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric biodegradation of the nerve agents Sarin and VX by human dUTPase: chemometrics, molecular docking and hybrid QM/MM calculations.
    de Castro AA; Soares FV; Pereira AF; Silva TC; Silva DR; Mancini DT; Caetano MS; da Cunha EFF; Ramalho TC
    J Biomol Struct Dyn; 2019 May; 37(8):2154-2164. PubMed ID: 30044197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of nanoceria shape on degradation of diethyl paraoxon: Synthesis, catalytic mechanism, and water remediation application.
    Zhan SW; Tseng WB; Tseng WL
    Environ Res; 2020 Sep; 188():109653. PubMed ID: 32526493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of recombinant organophosphorus hydrolase in the original producer of the enzyme, Sphingobium fuliginis ATCC 27551.
    Nakayama K; Ohmori T; Ishikawa S; Iwata N; Seto Y; Kawahara K
    Biosci Biotechnol Biochem; 2016 May; 80(5):1024-6. PubMed ID: 26784883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-Regulated Mechanisms for Degradation of Pesticides Paraoxon and Parathion by Phosphotriesterase: Insight from QM/MM and MD Simulations.
    Fu Y; Fan F; Wang B; Cao Z
    Chem Asian J; 2022 Jul; 17(14):e202200439. PubMed ID: 35586954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymes hydrolyzing organophosphates as potential catalytic scavengers against organophosphate poisoning.
    Masson P; Josse D; Lockridge O; Viguié N; Taupin C; Buhler C
    J Physiol Paris; 1998; 92(5-6):357-62. PubMed ID: 9789837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of DNA on the oxidase activity of nanoceria with different morphologies.
    Yang D; Fa M; Gao L; Zhao R; Luo Y; Yao X
    Nanotechnology; 2018 Sep; 29(38):385101. PubMed ID: 29949520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles.
    Korsvik C; Patil S; Seal S; Self WT
    Chem Commun (Camb); 2007 Mar; (10):1056-8. PubMed ID: 17325804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes.
    Wang Z; Shen X; Gao X; Zhao Y
    Nanoscale; 2019 Jul; 11(28):13289-13299. PubMed ID: 31287483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase.
    Ghanem E; Raushel FM
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):459-70. PubMed ID: 15982683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mixture of three engineered phosphotriesterases enables rapid detoxification of the entire spectrum of known threat nerve agents.
    Despotović D; Aharon E; Dubovetskyi A; Leader H; Ashani Y; Tawfik DS
    Protein Eng Des Sel; 2019 Dec; 32(4):169-174. PubMed ID: 31612205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatase-like Activity of Porous Nanorods of CeO
    Yao T; Tian Z; Zhang Y; Qu Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):195-201. PubMed ID: 30556997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mimicking the Active Sites of Organophosphorus Hydrolase on the Backbone of Graphene Oxide to Destroy Nerve Agent Simulants.
    Ma X; Zhang L; Xia M; Li S; Zhang X; Zhang Y
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21089-21093. PubMed ID: 28621926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial degradation of organophosphorus compounds.
    Singh BK; Walker A
    FEMS Microbiol Rev; 2006 May; 30(3):428-71. PubMed ID: 16594965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic-Molecule-Based Fluorescent Chemosensor for Nerve Agents and Organophosphorus Pesticides.
    Gori M; Thakur A; Sharma A; Flora SJS
    Top Curr Chem (Cham); 2021 Aug; 379(5):33. PubMed ID: 34346011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of efficient, stable, and reusable copper-phosphotriesterase hybrid nanoflowers for biodegradation of organophosphorus pesticides.
    Chen J; Guo Z; Xin Y; Shi Y; Li Y; Gu Z; Zhong J; Guo X; Zhang L
    Enzyme Microb Technol; 2021 May; 146():109766. PubMed ID: 33812563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoceria particles as catalytic amplifiers for alkaline phosphatase assays.
    Hayat A; Andreescu S
    Anal Chem; 2013 Nov; 85(21):10028-32. PubMed ID: 24053108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CeO
    Gai P; Pu L; Wang C; Zhu D; Li F
    Biosens Bioelectron; 2023 Jan; 220():114841. PubMed ID: 36323162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.