These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26663656)

  • 1. Tuning Optical Properties and Photocatalytic Activities of Carbon-based "Quantum Dots" Through their Surface Groups.
    Hu S
    Chem Rec; 2016 Feb; 16(1):219-30. PubMed ID: 26663656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon quantum dots and applications in photocatalytic energy conversion.
    Fernando KA; Sahu S; Liu Y; Lewis WK; Guliants EA; Jafariyan A; Wang P; Bunker CE; Sun YP
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8363-76. PubMed ID: 25845394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical regulation of carbon quantum dots from synthesis to photocatalytic activity.
    Hu S; Tian R; Wu L; Zhao Q; Yang J; Liu J; Cao S
    Chem Asian J; 2013 May; 8(5):1035-41. PubMed ID: 23441085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications.
    Guan X; Li Z; Geng X; Lei Z; Karakoti A; Wu T; Kumar P; Yi J; Vinu A
    Small; 2023 Apr; 19(17):e2207181. PubMed ID: 36693792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon quantum dots for biological applications.
    Chinnathambi S; Chen S; Ganesan S; Hanagata N
    Adv Healthc Mater; 2014 Jan; 3(1):10-29. PubMed ID: 23949967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning optical properties of Si quantum dots by π-conjugated capping molecules.
    Dung MX; Tung DD; Jeong S; Jeong HD
    Chem Asian J; 2013 Mar; 8(3):653-64. PubMed ID: 23307703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots.
    Ren J; Weber F; Weigert F; Wang Y; Choudhury S; Xiao J; Lauermann I; Resch-Genger U; Bande A; Petit T
    Nanoscale; 2019 Jan; 11(4):2056-2064. PubMed ID: 30644938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging.
    Ding C; Zhu A; Tian Y
    Acc Chem Res; 2014 Jan; 47(1):20-30. PubMed ID: 23911118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the electronic and optical properties of graphene and boron-nitride quantum dots by molecular charge-transfer interactions: a theoretical study.
    Bandyopadhyay A; Yamijala SS; Pati SK
    Phys Chem Chem Phys; 2013 Sep; 15(33):13881-7. PubMed ID: 23842737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescence properties of graphene versus other carbon nanomaterials.
    Cao L; Meziani MJ; Sahu S; Sun YP
    Acc Chem Res; 2013 Jan; 46(1):171-80. PubMed ID: 23092181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent quantum dots: synthesis, biomedical optical imaging, and biosafety assessment.
    Ji X; Peng F; Zhong Y; Su Y; He Y
    Colloids Surf B Biointerfaces; 2014 Dec; 124():132-9. PubMed ID: 25224376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal graphene quantum dots with well-defined structures.
    Yan X; Li B; Li LS
    Acc Chem Res; 2013 Oct; 46(10):2254-62. PubMed ID: 23150896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZnO quantum dots-decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances.
    Wu JM; Tsay LY
    Nanotechnology; 2015 Oct; 26(39):395704. PubMed ID: 26357994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ synthesis of high stable CdS quantum dots and their application for photocatalytic degradation of dyes.
    Samadi-Maybodi A; Sadeghi-Maleki MR
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():156-64. PubMed ID: 26208270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of electronic coupling between capping molecules and quantum dots on the light absorption and emission of octyl, styryl, and 4-ethynylstyryl terminated silicon quantum dots.
    Le TH; Jeong HD
    Phys Chem Chem Phys; 2014 Sep; 16(35):18821-6. PubMed ID: 25079044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and accurate quantification of quantum dots via single-particle counting.
    Zhang CY; Johnson LW
    J Am Chem Soc; 2008 Mar; 130(12):3750-1. PubMed ID: 18311984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-standing single-walled carbon nanotube-CdSe quantum dots hybrid ultrathin films for flexible optoelectronic conversion devices.
    Shi Z; Liu C; Lv W; Shen H; Wang D; Chen L; Li LS; Jin J
    Nanoscale; 2012 Aug; 4(15):4515-21. PubMed ID: 22695781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the optical properties of quantum dots by surface coating with calix[n]arene carboxylic acids.
    Jin T; Fujii F; Yamada E; Nodasaka Y; Kinjo M
    J Am Chem Soc; 2006 Jul; 128(29):9288-9. PubMed ID: 16848437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.