These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 26663668)
41. Development of an antibacterial surface with a self-defensive and pH-responsive function. Zhang J; Zhu W; Xin B; Lin S; Jin L; Wang H Biomater Sci; 2019 Aug; 7(9):3795-3800. PubMed ID: 31233048 [TBL] [Abstract][Full Text] [Related]
42. Control of lysozyme adsorption by pH on surfaces modified with polyampholyte brushes. Lei H; Wang M; Tang Z; Luan Y; Liu W; Song B; Chen H Langmuir; 2014 Jan; 30(2):501-8. PubMed ID: 24377837 [TBL] [Abstract][Full Text] [Related]
43. Antimicrobial and bacteria-releasing multifunctional surfaces: oligo (p-phenylene-ethynylene)/poly (N-isopropylacrylamide) films deposited by RIR-MAPLE. Yu Q; Ge W; Atewologun A; Stiff-Roberts AD; López GP Colloids Surf B Biointerfaces; 2015 Feb; 126():328-34. PubMed ID: 25590794 [TBL] [Abstract][Full Text] [Related]
44. Micro- and Nanopatterned Silk Substrates for Antifouling Applications. Tullii G; Donini S; Bossio C; Lodola F; Pasini M; Parisini E; Galeotti F; Antognazza MR ACS Appl Mater Interfaces; 2020 Feb; 12(5):5437-5446. PubMed ID: 31917532 [TBL] [Abstract][Full Text] [Related]
45. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria. Hsiao SW; Venault A; Yang HS; Chang Y Colloids Surf B Biointerfaces; 2014 Jun; 118():254-60. PubMed ID: 24794801 [TBL] [Abstract][Full Text] [Related]
46. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate. Deng J; Liu X; Zhang S; Cheng C; Nie C; Zhao C Langmuir; 2015 Sep; 31(35):9665-74. PubMed ID: 26301434 [TBL] [Abstract][Full Text] [Related]
47. Lysozyme-Based Antibacterial Nanomotors. Kiristi M; Singh VV; Esteban-Fernández de Ávila B; Uygun M; Soto F; Aktaş Uygun D; Wang J ACS Nano; 2015 Sep; 9(9):9252-9. PubMed ID: 26308491 [TBL] [Abstract][Full Text] [Related]
48. Bioinspired nanopillar surface for switchable mechano-bactericidal and releasing actions. Yi Y; Jiang R; Liu Z; Dou H; Song L; Tian L; Ming W; Ren L; Zhao J J Hazard Mater; 2022 Jun; 432():128685. PubMed ID: 35338932 [TBL] [Abstract][Full Text] [Related]
49. Ultrahighly Charged Amphiphilic Polymer Brushes with Super-Antibacterial and Self-Cleaning Capabilities. Chen T; Yang H; Wu X; Yu D; Ma A; He X; Sun K; Wang J Langmuir; 2019 Feb; 35(8):3031-3037. PubMed ID: 30722665 [TBL] [Abstract][Full Text] [Related]
50. Polyion multilayers with precise surface charge control for antifouling. Zhu X; Jańczewski D; Guo S; Lee SS; Parra Velandia FJ; Teo SL; He T; Puniredd SR; Vancso GJ ACS Appl Mater Interfaces; 2015 Jan; 7(1):852-61. PubMed ID: 25485625 [TBL] [Abstract][Full Text] [Related]
52. Crystal Violet-Impregnated Slippery Surface to Prevent Bacterial Contamination of Surfaces. Patir A; Hwang GB; Lourenco C; Nair SP; Carmalt CJ; Parkin IP ACS Appl Mater Interfaces; 2021 Feb; 13(4):5478-5485. PubMed ID: 33492929 [TBL] [Abstract][Full Text] [Related]
53. A self-defense hierarchical antibacterial surface with inherent antifouling and bacteria-activated bactericidal properties for infection resistance. Wang L; Sun L; Zhang X; Wang H; Song L; Luan S Biomater Sci; 2022 Apr; 10(8):1968-1980. PubMed ID: 35258043 [TBL] [Abstract][Full Text] [Related]
54. Biomolecules in multilayer film for antimicrobial and easy-cleaning stainless steel surface applications. Vreuls C; Zocchi G; Garitte G; Archambeau C; Martial J; Van de Weerdt C Biofouling; 2010 Aug; 26(6):645-56. PubMed ID: 20645194 [TBL] [Abstract][Full Text] [Related]
55. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Zodrow K; Brunet L; Mahendra S; Li D; Zhang A; Li Q; Alvarez PJ Water Res; 2009 Feb; 43(3):715-23. PubMed ID: 19046755 [TBL] [Abstract][Full Text] [Related]
56. Polymer multilayers with pH-triggered release of antibacterial agents. Pavlukhina S; Lu Y; Patimetha A; Libera M; Sukhishvili S Biomacromolecules; 2010 Dec; 11(12):3448-56. PubMed ID: 21028796 [TBL] [Abstract][Full Text] [Related]
57. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. Liu H; Li Y; Sun K; Fan J; Zhang P; Meng J; Wang S; Jiang L J Am Chem Soc; 2013 May; 135(20):7603-9. PubMed ID: 23601154 [TBL] [Abstract][Full Text] [Related]
58. A Multiple-Stimuli-Responsive Amphiphilic Copolymer for Antifouling and Antibacterial Functionality via a "Resistance-Kill-Release" Mechanism. Liao X; Niu K; Liu F; Zhang Y Molecules; 2022 Aug; 27(16):. PubMed ID: 36014312 [TBL] [Abstract][Full Text] [Related]
59. Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds. Ji J; Zhang W J Biomed Mater Res A; 2009 Feb; 88(2):448-53. PubMed ID: 18306288 [TBL] [Abstract][Full Text] [Related]
60. Hierarchical polymer coating for optimizing the antifouling and bactericidal efficacies. Yan S; Song L; Li Z; Luan S; Shi H; Xin Z; Li S; Yang Y; Yin J J Biomater Sci Polym Ed; 2016 Oct; 27(14):1397-412. PubMed ID: 27363527 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]