These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26663755)

  • 1. Porous Silica-Coated Gold Nanorods: A Highly Active Catalyst for the Reduction of 4-Nitrophenol.
    Mohanta J; Satapathy S; Si S
    Chemphyschem; 2016 Feb; 17(3):364-8. PubMed ID: 26663755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Silica-Coated Gold Sponges with High Thermal and Catalytic Stability.
    Lee MJ; Kang SH; Dey J; Choi SM
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22562-22570. PubMed ID: 29806933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic reduction-adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon.
    Guo P; Tang L; Tang J; Zeng G; Huang B; Dong H; Zhang Y; Zhou Y; Deng Y; Ma L; Tan S
    J Colloid Interface Sci; 2016 May; 469():78-85. PubMed ID: 26871277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of mesoporous silica hollow nanospheres with multiple gold cores and catalytic activity.
    Chen J; Xue Z; Feng S; Tu B; Zhao D
    J Colloid Interface Sci; 2014 Sep; 429():62-7. PubMed ID: 24935190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N,N-Dimethylformamide-stabilized gold nanoclusters as a catalyst for the reduction of 4-nitrophenol.
    Yamamoto H; Yano H; Kouchi H; Obora Y; Arakawa R; Kawasaki H
    Nanoscale; 2012 Jul; 4(14):4148-54. PubMed ID: 22422276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol.
    Narayanan KB; Sakthivel N
    J Hazard Mater; 2011 May; 189(1-2):519-25. PubMed ID: 21420237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system.
    Deng Y; Cai Y; Sun Z; Liu J; Liu C; Wei J; Li W; Liu C; Wang Y; Zhao D
    J Am Chem Soc; 2010 Jun; 132(24):8466-73. PubMed ID: 20507122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branch number matters: Promoting catalytic reduction of 4-nitrophenol over gold nanostars by raising the number of branches and coating with mesoporous SiO2.
    Ndokoye P; Zhao Q; Li X; Li T; Tade MO; Wang S
    J Colloid Interface Sci; 2016 Sep; 477():1-7. PubMed ID: 27235790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Au Catalyst Decorated Silica Spheres: Synthesis and High-Performance in 4-Nitrophenol Reduction.
    Zhang F; Yang P; Matras-Postolek K
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5966-74. PubMed ID: 27427658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly ordered mesoporous silica film nanocomposites containing gold nanoparticles for the catalytic reduction of 4-nitrophenol.
    Jalani MA; Yuliati L; Lee SL; Lintang HO
    Beilstein J Nanotechnol; 2019; 10():1368-1379. PubMed ID: 31355105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silica-coated gold nanorods with a gold overcoat: controlling optical properties by controlling the dimensions of a gold-silica-gold layered nanoparticle.
    Cong H; Toftegaard R; Arnbjerg J; Ogilby PR
    Langmuir; 2010 Mar; 26(6):4188-95. PubMed ID: 20000431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dealloying process of core-shell Au@AuAg nanorods for porous nanorods with enhanced catalytic activity.
    Guo X; Ye W; Sun H; Zhang Q; Yang J
    Nanoscale; 2013 Dec; 5(24):12582-8. PubMed ID: 24172858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered mesoporous silica cubic particles decorated with silver nanoparticles: a highly active and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol.
    Fan HT; Liu XG; Xing XJ; Li B; Wang K; Chen ST; Wu Z; Qiu DF
    Dalton Trans; 2019 Feb; 48(8):2692-2700. PubMed ID: 30719510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency reduction of
    Gia-Thien Ho T; Do BL; Pham BV; Nguyen TTV; Phan HP; Nguyen HB; Vo PPT; Tri N
    RSC Adv; 2022 Sep; 12(39):25753-25763. PubMed ID: 36199345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy.
    Nguyen SC; Zhang Q; Manthiram K; Ye X; Lomont JP; Harris CB; Weller H; Alivisatos AP
    ACS Nano; 2016 Feb; 10(2):2144-51. PubMed ID: 26840805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size dependent catalysis with CTAB-stabilized gold nanoparticles.
    Fenger R; Fertitta E; Kirmse H; Thünemann AF; Rademann K
    Phys Chem Chem Phys; 2012 Jul; 14(26):9343-9. PubMed ID: 22549475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation.
    Yan W; Mahurin SM; Chen B; Overbury SH; Dai S
    J Phys Chem B; 2005 Aug; 109(32):15489-96. PubMed ID: 16852965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiply twinned AgNi alloy nanoparticles as highly active catalyst for multiple reduction and degradation reactions.
    Kumar M; Deka S
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16071-81. PubMed ID: 25171089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple gold nanorods@hierarchically porous silica nanospheres for efficient multi-drug delivery and photothermal therapy.
    Li N; Niu D; Jia X; He J; Jiang Y; Gu J; Li Z; Xu S; Li Y
    J Mater Chem B; 2017 Feb; 5(8):1642-1649. PubMed ID: 32263936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hollow porous Cu particles from silica-encapsulated Cu
    Jiang J; Soo Lim Y; Park S; Kim SH; Yoon S; Piao L
    Nanoscale; 2017 Mar; 9(11):3873-3880. PubMed ID: 28256659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.