These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 26663844)
1. Uptake of Organohalide Pollutants, and Release of Partially Dehalogenated Products, by NpRdhA, a 'Base-Off' Cob(II)alamin-Dependent Reductive Dehalogenase from a Deep Sea Bacterium. A Molecular Dynamics Investigation. Pietra F Chem Biodivers; 2015 Dec; 12(12):1945-53. PubMed ID: 26663844 [TBL] [Abstract][Full Text] [Related]
2. Reductive Dehalogenases Come of Age in Biological Destruction of Organohalides. Jugder BE; Ertan H; Lee M; Manefield M; Marquis CP Trends Biotechnol; 2015 Oct; 33(10):595-610. PubMed ID: 26409778 [TBL] [Abstract][Full Text] [Related]
4. Theoretical investigations into the intermediacy of chlorinated vinylcobalamins in the reductive dehalogenation of chlorinated ethylenes. Pratt DA; van der Donk WA J Am Chem Soc; 2005 Jan; 127(1):384-96. PubMed ID: 15631489 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional regulation of organohalide pollutant utilisation in bacteria. Maucourt B; Vuilleumier S; Bringel F FEMS Microbiol Rev; 2020 Mar; 44(2):189-207. PubMed ID: 32011697 [TBL] [Abstract][Full Text] [Related]
7. The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of Cob(II)alamin enzyme. Jarrett JT; Hoover DM; Ludwig ML; Matthews RG Biochemistry; 1998 Sep; 37(36):12649-58. PubMed ID: 9730838 [TBL] [Abstract][Full Text] [Related]
8. Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Wang S; Qiu L; Liu X; Xu G; Siegert M; Lu Q; Juneau P; Yu L; Liang D; He Z; Qiu R Biotechnol Adv; 2018; 36(4):1194-1206. PubMed ID: 29631017 [TBL] [Abstract][Full Text] [Related]
15. Kinetic studies on the reaction of cob(II)alamin with hypochlorous acid: Evidence for one electron oxidation of the metal center and corrin ring destruction. Dassanayake RS; Farhath MM; Shelley JT; Basu S; Brasch NE J Inorg Biochem; 2016 Oct; 163():81-87. PubMed ID: 27567143 [TBL] [Abstract][Full Text] [Related]
16. Burning question: Rethinking organohalide degradation strategy for bioremediation applications. Lu Q; Liang Q; Wang S Microb Biotechnol; 2024 Aug; 17(8):e14539. PubMed ID: 39075849 [TBL] [Abstract][Full Text] [Related]
17. A common mechanism for coenzyme cobalamin-dependent reductive dehalogenases. Johannissen LO; Leys D; Hay S Phys Chem Chem Phys; 2017 Feb; 19(8):6090-6094. PubMed ID: 28191552 [TBL] [Abstract][Full Text] [Related]
18. The effect of a unique halide-stabilizing residue on the catalytic properties of haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58. Hasan K; Gora A; Brezovsky J; Chaloupkova R; Moskalikova H; Fortova A; Nagata Y; Damborsky J; Prokop Z FEBS J; 2013 Jul; 280(13):3149-59. PubMed ID: 23490078 [TBL] [Abstract][Full Text] [Related]
19. Characterization of chlorovinylcobalamin, a putative intermediate in reductive degradation of chlorinated ethylenes. McCauley KM; Wilson SR; van der Donk WA J Am Chem Soc; 2003 Apr; 125(15):4410-1. PubMed ID: 12683797 [TBL] [Abstract][Full Text] [Related]
20. Kinetic studies on the reaction between cob(I)alamin and peroxynitrite: rapid oxidation of cob(I)alamin to cob(II)alamin by peroxynitrous acid. Mukherjee R; Brasch NE Chemistry; 2011 Oct; 17(42):11723-7. PubMed ID: 21922587 [No Abstract] [Full Text] [Related] [Next] [New Search]