BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26663873)

  • 1. Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies.
    Zhang C; Yan Y; Zou Q; Chen J; Li C
    Asia Pac J Clin Oncol; 2016 Mar; 12(1):13-21. PubMed ID: 26663873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles.
    Islam T; Josephson L
    Cancer Biomark; 2009; 5(2):99-107. PubMed ID: 19414927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer.
    Thomas R; Park IK; Jeong YY
    Int J Mol Sci; 2013 Jul; 14(8):15910-30. PubMed ID: 23912234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of a cell penetrating peptide modified superparamagnetic iron oxide and MRI detection of bladder cancer.
    Ding C; Wu K; Wang W; Guan Z; Wang L; Wang X; Wang R; Liu L; Fan J
    Oncotarget; 2017 Jan; 8(3):4718-4729. PubMed ID: 27902468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MR imaging of human pancreatic cancer xenograft labeled with superparamagnetic iron oxide in nude mice.
    Wu CY; Pu Y; Liu G; Shao Y; Ma QS; Zhang XM
    Contrast Media Mol Imaging; 2012; 7(1):51-8. PubMed ID: 22344880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and quality test of superparamagnetic iron oxide labeled antisense oligodeoxynucleotide probe: a preliminary study.
    Wen M; Li B; Ouyang Y; Luo Y; Li S
    Ann Biomed Eng; 2009 Jun; 37(6):1240-50. PubMed ID: 19337837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications.
    Jin R; Lin B; Li D; Ai H
    Curr Opin Pharmacol; 2014 Oct; 18():18-27. PubMed ID: 25173782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of viability of transplanted beta cells labeled with a novel contrast agent - polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles by magnetic resonance imaging.
    Zhang B; Jiang B; Chen Y; Huang H; Xie Q; Kang M; Zhang H; Zhai C; Wu Y
    Contrast Media Mol Imaging; 2012; 7(1):35-44. PubMed ID: 22344878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MUC-1 aptamer targeted superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of pancreatic cancer in vivo and in vitro experiment.
    Zou Q; Zhang CJ; Yan YZ; Min ZJ; Li CS
    J Cell Biochem; 2019 Nov; 120(11):18650-18658. PubMed ID: 31338877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary Study of MR and Fluorescence Dual-mode Imaging: Combined Macrophage-Targeted and Superparamagnetic Polymeric Micelles.
    Li WJ; Wang Y; Liu Y; Wu T; Cai WL; Shuai XT; Hong GB
    Int J Med Sci; 2018; 15(2):129-141. PubMed ID: 29333097
    [No Abstract]   [Full Text] [Related]  

  • 11. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging.
    Zhang Z; Mascheri N; Dharmakumar R; Fan Z; Paunesku T; Woloschak G; Li D
    Cytotherapy; 2009; 11(1):43-51. PubMed ID: 18956269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging.
    Sharifi S; Seyednejad H; Laurent S; Atyabi F; Saei AA; Mahmoudi M
    Contrast Media Mol Imaging; 2015; 10(5):329-55. PubMed ID: 25882768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of superparamagnetic iron oxide with iRGD peptide on the labeling of pancreatic cancer cells in vitro: a preliminary study.
    Zuo HD; Yao WW; Chen TW; Zhu J; Zhang JJ; Pu Y; Liu G; Zhang XM
    Biomed Res Int; 2014; 2014():852352. PubMed ID: 24977163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of epidermal growth factor receptor-positive glioblastoma using lipid-encapsulated targeted superparamagnetic iron oxide nanoparticles in vitro.
    Chen HL; Hsu FT; Kao YJ; Liu HS; Huang WZ; Lu CF; Tsai PH; Ali AAA; Lee GA; Chen RJ; Chen CY
    J Nanobiotechnology; 2017 Nov; 15(1):86. PubMed ID: 29166921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of exendin-4-conjugated superparamagnetic iron oxide nanoparticles in beta-cell-targeted MRI.
    Zhang B; Yang B; Zhai C; Jiang B; Wu Y
    Biomaterials; 2013 Jul; 34(23):5843-52. PubMed ID: 23642536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superparamagnetic iron oxide nanoparticle probes for molecular imaging.
    Thorek DL; Chen AK; Czupryna J; Tsourkas A
    Ann Biomed Eng; 2006 Jan; 34(1):23-38. PubMed ID: 16496086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ENO1-targeted superparamagnetic iron oxide nanoparticles for detecting pancreatic cancer by magnetic resonance imaging.
    Wang L; Yin H; Bi R; Gao G; Li K; Liu HL
    J Cell Mol Med; 2020 May; 24(10):5751-5757. PubMed ID: 32285549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple PEG conjugation of SPIO via an Au-S bond improves its tumor targeting potency as a novel MR tumor imaging agent.
    Kojima H; Mukai Y; Yoshikawa M; Kamei K; Yoshikawa T; Morita M; Inubushi T; Yamamoto TA; Yoshioka Y; Okada N; Seino S; Nakagawa S
    Bioconjug Chem; 2010 Jun; 21(6):1026-31. PubMed ID: 20446679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging of hepatocellular carcinoma: qualitative and quantitative analysis of postvascular phase contrast-enhanced ultrasonography with sonazoid. Comparison with superparamagnetic iron oxide magnetic resonance images.
    Inoue T; Kudo M; Hatanaka K; Takahashi S; Kitai S; Ueda T; Ishikawa E; Hagiwara S; Minami Y; Chung H; Ueshima K; Maekawa K
    Oncology; 2008; 75 Suppl 1():48-54. PubMed ID: 19092272
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.