BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26663931)

  • 1. Parameter estimation in a Holzapfel-Ogden law for healthy myocardium.
    Gao H; Li WG; Cai L; Berry C; Luo XY
    J Eng Math; 2015; 95(1):231-248. PubMed ID: 26663931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of left ventricular parameters based on deep learning method.
    Cai L; Jiao J; Ma P; Xie W; Wang Y
    Math Biosci Eng; 2022 Apr; 19(7):6638-6658. PubMed ID: 35730275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo estimation of passive biomechanical properties of human myocardium.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    Med Biol Eng Comput; 2018 Sep; 56(9):1615-1631. PubMed ID: 29479659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity analysis and inverse uncertainty quantification for the left ventricular passive mechanics.
    Lazarus A; Dalton D; Husmeier D; Gao H
    Biomech Model Mechanobiol; 2022 Jun; 21(3):953-982. PubMed ID: 35377030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive mechanical properties in healthy and infarcted rat left ventricle characterised via a mixture model.
    Martonová D; Alkassar M; Seufert J; Holz D; Dương MT; Reischl B; Friedrich O; Leyendecker S
    J Mech Behav Biomed Mater; 2021 Jul; 119():104430. PubMed ID: 33780851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modified Holzapfel-Ogden law for a residually stressed finite strain model of the human left ventricle in diastole.
    Wang HM; Luo XY; Gao H; Ogden RW; Griffith BE; Berry C; Wang TJ
    Biomech Model Mechanobiol; 2014 Jan; 13(1):99-113. PubMed ID: 23609894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast parameter inference in a biomechanical model of the left ventricle by using statistical emulation.
    Davies V; Noè U; Lazarus A; Gao H; Macdonald B; Berry C; Luo X; Husmeier D
    J R Stat Soc Ser C Appl Stat; 2019 Nov; 68(5):1555-1576. PubMed ID: 31762497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an in vivo method for determining material properties of passive myocardium.
    Remme EW; Hunter PJ; Smiseth O; Stevens C; Rabben SI; Skulstad H; Angelsen BB
    J Biomech; 2004 May; 37(5):669-78. PubMed ID: 15046996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI.
    Hadjicharalambous M; Chabiniok R; Asner L; Sammut E; Wong J; Carr-White G; Lee J; Razavi R; Smith N; Nordsletten D
    Biomech Model Mechanobiol; 2015 Aug; 14(4):807-28. PubMed ID: 25510227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics.
    Li DS; Avazmohammadi R; Merchant SS; Kawamura T; Hsu EW; Gorman JH; Gorman RC; Sacks MS
    J Mech Behav Biomed Mater; 2020 Mar; 103():103508. PubMed ID: 32090941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment.
    Cansız FB; Dal H; Kaliske M
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1160-1172. PubMed ID: 24533658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjoint multi-start-based estimation of cardiac hyperelastic material parameters using shear data.
    Balaban G; Alnæs MS; Sundnes J; Rognes ME
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1509-1521. PubMed ID: 27008196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A poroelastic immersed finite element framework for modelling cardiac perfusion and fluid-structure interaction.
    Richardson SIH; Gao H; Cox J; Janiczek R; Griffith BE; Berry C; Luo X
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3446. PubMed ID: 33559359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Strain Energy Function Representing the Passive Behavior of the Myocardium.
    Hussein TM; Criscione JC
    J Biomech Eng; 2023 Nov; 145(11):. PubMed ID: 37338238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian inference of constitutive model parameters from uncertain uniaxial experiments on murine tendons.
    Akintunde AR; Miller KS; Schiavazzi DE
    J Mech Behav Biomed Mater; 2019 Aug; 96():285-300. PubMed ID: 31078970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardial material property determination in the in vivo heart using magnetic resonance imaging.
    Moulton MJ; Creswell LL; Downing SW; Actis RL; Szabó BA; Pasque MK
    Int J Card Imaging; 1996 Sep; 12(3):153-67. PubMed ID: 8915716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surrogate models based on machine learning methods for parameter estimation of left ventricular myocardium.
    Cai L; Ren L; Wang Y; Xie W; Zhu G; Gao H
    R Soc Open Sci; 2021 Jan; 8(1):201121. PubMed ID: 33614068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial material parameter estimation: a comparison of invariant based orthotropic constitutive equations.
    Schmid H; Wang YK; Ashton J; Ehret AE; Krittian SB; Nash MP; Hunter PJ
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):283-95. PubMed ID: 19089682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.