These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 26664146)
1. The changing nature of life cycle assessment. McManus MC; Taylor CM Biomass Bioenergy; 2015 Nov; 82():13-26. PubMed ID: 26664146 [TBL] [Abstract][Full Text] [Related]
2. Challenge clusters facing LCA in environmental decision-making-what we can learn from biofuels. McManus MC; Taylor CM; Mohr A; Whittaker C; Scown CD; Borrion AL; Glithero NJ; Yin Y Int J Life Cycle Assess; 2015; 20():1399-1414. PubMed ID: 27453635 [TBL] [Abstract][Full Text] [Related]
3. Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. Hiloidhari M; Baruah DC; Singh A; Kataki S; Medhi K; Kumari S; Ramachandra TV; Jenkins BM; Thakur IS Bioresour Technol; 2017 Oct; 242():218-226. PubMed ID: 28343863 [TBL] [Abstract][Full Text] [Related]
4. The hotspots of life cycle assessment for bioenergy: A review by social network analysis. Li J; Wang Y; Yan B Sci Total Environ; 2018 Jun; 625():1301-1308. PubMed ID: 29996427 [TBL] [Abstract][Full Text] [Related]
5. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment? Meier MS; Stoessel F; Jungbluth N; Juraske R; Schader C; Stolze M J Environ Manage; 2015 Feb; 149():193-208. PubMed ID: 25463583 [TBL] [Abstract][Full Text] [Related]
6. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region. Shonnard DR; Klemetsrud B; Sacramento-Rivero J; Navarro-Pineda F; Hilbert J; Handler R; Suppen N; Donovan RP Environ Manage; 2015 Dec; 56(6):1356-76. PubMed ID: 26041501 [TBL] [Abstract][Full Text] [Related]
7. Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland. Clarke R; Sosa A; Murphy F Sci Total Environ; 2019 May; 664():262-275. PubMed ID: 30743120 [TBL] [Abstract][Full Text] [Related]
8. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches. Glithero NJ; Ramsden SJ; Wilson P Agric Syst; 2012 Jun; 109():53-64. PubMed ID: 25540473 [TBL] [Abstract][Full Text] [Related]
9. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes. Tonini D; Hamelin L; Wenzel H; Astrup T Environ Sci Technol; 2012 Dec; 46(24):13521-30. PubMed ID: 23126612 [TBL] [Abstract][Full Text] [Related]
10. The Relevance of Life Cycle Assessment Tools in the Development of Emerging Decarbonization Technologies. Fernández-González J; Rumayor M; Domínguez-Ramos A; Irabien A; Ortiz I JACS Au; 2023 Oct; 3(10):2631-2639. PubMed ID: 37885586 [TBL] [Abstract][Full Text] [Related]
11. Applying consequential LCA to support energy policy: land use change effects of bioenergy production. Vázquez-Rowe I; Marvuglia A; Rege S; Benetto E Sci Total Environ; 2014 Feb; 472():78-89. PubMed ID: 24291133 [TBL] [Abstract][Full Text] [Related]
12. A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. Ubando AT; Rivera DRT; Chen WH; Culaba AB Bioresour Technol; 2019 Nov; 291():121837. PubMed ID: 31353166 [TBL] [Abstract][Full Text] [Related]
13. Consensus, uncertainties and challenges for perennial bioenergy crops and land use. Whitaker J; Field JL; Bernacchi CJ; Cerri CEP; Ceulemans R; Davies CA; DeLucia EH; Donnison IS; McCalmont JP; Paustian K; Rowe RL; Smith P; Thornley P; McNamara NP Glob Change Biol Bioenergy; 2018 Mar; 10(3):150-164. PubMed ID: 29497458 [TBL] [Abstract][Full Text] [Related]
14. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Mohr A; Raman S Energy Policy; 2013 Dec; 63(100):114-122. PubMed ID: 24926117 [TBL] [Abstract][Full Text] [Related]
15. Life cycle assessment (LCA): informing the development of a sustainable circular bioeconomy? Sevigné-Itoiz E; Mwabonje O; Panoutsou C; Woods J Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2206):20200352. PubMed ID: 34334023 [TBL] [Abstract][Full Text] [Related]
16. Environmental sustainability of biofuels: a review. Jeswani HK; Chilvers A; Azapagic A Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200351. PubMed ID: 33363439 [TBL] [Abstract][Full Text] [Related]
17. Recent developments in Life Cycle Assessment. Finnveden G; Hauschild MZ; Ekvall T; Guinée J; Heijungs R; Hellweg S; Koehler A; Pennington D; Suh S J Environ Manage; 2009 Oct; 91(1):1-21. PubMed ID: 19716647 [TBL] [Abstract][Full Text] [Related]
18. Life cycle assessment of bioenergy systems: state of the art and future challenges. Cherubini F; Strømman AH Bioresour Technol; 2011 Jan; 102(2):437-51. PubMed ID: 20832298 [TBL] [Abstract][Full Text] [Related]
19. Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Prasad S; Singh A; Korres NE; Rathore D; Sevda S; Pant D Bioresour Technol; 2020 May; 303():122964. PubMed ID: 32061494 [TBL] [Abstract][Full Text] [Related]
20. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas. Watkins DW; de Moraes MM; Asbjornsen H; Mayer AS; Licata J; Lopez JG; Pypker TG; Molina VG; Marques GF; Carneiro AC; Nuñez HM; Önal H; da Nobrega Germano B Environ Manage; 2015 Dec; 56(6):1295-314. PubMed ID: 25813630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]