These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26664642)

  • 1. Synthesis, structure, and mechanical properties of silica nanocomposite polyrotaxane gels.
    Kato K; Matsui D; Mayumi K; Ito K
    Beilstein J Org Chem; 2015; 11():2194-201. PubMed ID: 26664642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Softness, Elasticity, and Toughness of Polymer Networks with Slide-Ring Cross-Links.
    Mayumi K; Liu C; Yasuda Y; Ito K
    Gels; 2021 Jul; 7(3):. PubMed ID: 34287305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of tough, thermally stable, and water-resistant double-network ion gels consisting of silica nanoparticles/poly(ionic liquid)s through photopolymerisation of an ionic monomer and subsequent solvent removal.
    Watanabe T; Takahashi R; Ono T
    Soft Matter; 2020 Feb; 16(6):1572-1581. PubMed ID: 31951230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic/organic nanocomposite ion gels with well dispersed secondary silica nanoparticles.
    Yasui T; Kamio E; Matsuyama H
    RSC Adv; 2020 Apr; 10(24):14451-14457. PubMed ID: 35498451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical behavior and interphase structure in a silica-polystyrene nanocomposite under uniaxial deformation.
    Rahimi M; Iriarte-Carretero I; Ghanbari A; Böhm MC; Müller-Plathe F
    Nanotechnology; 2012 Aug; 23(30):305702. PubMed ID: 22751262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inorganic/Organic Double-Network Ion Gels with Partially Developed Silica-Particle Network.
    Yasui T; Kamio E; Matsuyama H
    Langmuir; 2018 Sep; 34(36):10622-10633. PubMed ID: 30119613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocomposite ion gels based on silica nanoparticles and an ionic liquid: ionic transport, viscoelastic properties, and microstructure.
    Ueno K; Hata K; Katakabe T; Kondoh M; Watanabe M
    J Phys Chem B; 2008 Jul; 112(30):9013-9. PubMed ID: 18610964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemorheological Monitoring of Cross-Linking in Slide-ring Gels Derived From
    Dikshit K; Bruns CJ
    Front Chem; 2022; 10():923775. PubMed ID: 35928212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly stretchable and super tough nanocomposite physical hydrogels facilitated by the coupling of intermolecular hydrogen bonds and analogous chemical crosslinking of nanoparticles.
    Shi FK; Wang XP; Guo RH; Zhong M; Xie XM
    J Mater Chem B; 2015 Feb; 3(7):1187-1192. PubMed ID: 32264469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and self-healable nanocomposite physical hydrogel facilitated by the synergy of ternary crosslinking points in a single network.
    Shi FK; Zhong M; Zhang LQ; Liu XY; Xie XM
    J Mater Chem B; 2016 Oct; 4(37):6221-6227. PubMed ID: 32263634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels.
    Yang J; Han CR; Duan JF; Xu F; Sun RC
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3199-207. PubMed ID: 23534336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive structure of gels and microgels with sliding cross-links: enhanced softness, stretchability and permeability.
    Gavrilov AA; Potemkin II
    Soft Matter; 2018 Jun; 14(24):5098-5105. PubMed ID: 29873660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network.
    Bin Imran A; Esaki K; Gotoh H; Seki T; Ito K; Sakai Y; Takeoka Y
    Nat Commun; 2014 Oct; 5():5124. PubMed ID: 25296246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosilica-induced high mechanical strength of nanocomposite hydrogel for killing fluids.
    Sun F; Lin M; Dong Z; Zhang J; Wang C; Wang S; Song F
    J Colloid Interface Sci; 2015 Nov; 458():45-52. PubMed ID: 26203591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ grafting silica nanoparticles reinforced nanocomposite hydrogels.
    Yang J; Han CR; Duan JF; Xu F; Sun RC
    Nanoscale; 2013 Nov; 5(22):10858-63. PubMed ID: 24089085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tough nanocomposite double network hydrogels reinforced with clay nanorods through covalent bonding and reversible chain adsorption.
    Gao G; Du G; Cheng Y; Fu J
    J Mater Chem B; 2014 Mar; 2(11):1539-1548. PubMed ID: 32261372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel assessment of microstructural and mechanical behaviour of bilayer silica-reinforced nanocomposite hydrogels as a candidate for artificial cartilage.
    Mostakhdemin M; Nand A; Ramezani M
    J Mech Behav Biomed Mater; 2021 Apr; 116():104333. PubMed ID: 33494020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of microstructure, viscoelasticity, heterogeneity and ergodicity in pectin-laponite-CTAB-calcium nanocomposite hydrogels.
    Joshi N; Rawat K; Bohidar HB
    Carbohydr Polym; 2016 Jan; 136():242-9. PubMed ID: 26572352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature-Inspired Hydrogels with Soft and Stiff Zones that Exhibit a 100-Fold Difference in Elastic Modulus.
    Gharazi S; Zarket BC; DeMella KC; Raghavan SR
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34664-34673. PubMed ID: 30265507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility.
    Ohmori K; Abu Bin I; Seki T; Liu C; Mayumi K; Ito K; Takeoka Y
    Chem Commun (Camb); 2016 Dec; 52(95):13757-13759. PubMed ID: 27797388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.