BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26664853)

  • 1. Pit- and trench-forming osteoclasts: a distinction that matters.
    Merrild DM; Pirapaharan DC; Andreasen CM; Kjærsgaard-Andersen P; Møller AM; Ding M; Delaissé JM; Søe K
    Bone Res; 2015; 3():15032. PubMed ID: 26664853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time analysis of osteoclast resorption and fusion dynamics in response to bone resorption inhibitors.
    Panwar P; Olesen JB; Blum G; Delaisse JM; Søe K; Brömme D
    Sci Rep; 2024 Mar; 14(1):7358. PubMed ID: 38548807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steering the osteoclast through the demineralization-collagenolysis balance.
    Søe K; Merrild DM; Delaissé JM
    Bone; 2013 Sep; 56(1):191-8. PubMed ID: 23777960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoclasts' Ability to Generate Trenches Rather Than Pits Depends on High Levels of Active Cathepsin K and Efficient Clearance of Resorption Products.
    Borggaard XG; Pirapaharan DC; Delaissé JM; Søe K
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of bone resorption by the cathepsin K inhibitor odanacatib is fully reversible.
    Zhuo Y; Gauthier JY; Black WC; Percival MD; Duong LT
    Bone; 2014 Oct; 67():269-80. PubMed ID: 25038310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-lapse reveals that osteoclasts can move across the bone surface while resorbing.
    Søe K; Delaissé JM
    J Cell Sci; 2017 Jun; 130(12):2026-2035. PubMed ID: 28473470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of the cathepsin K inhibitor odanacatib on osteoclastic bone resorption and vesicular trafficking.
    Leung P; Pickarski M; Zhuo Y; Masarachia PJ; Duong LT
    Bone; 2011 Oct; 49(4):623-35. PubMed ID: 21718816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle.
    Søe K; Delaissé JM
    J Bone Miner Res; 2010 Oct; 25(10):2184-92. PubMed ID: 20499345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Mild Inhibition of Cathepsin K Paradoxically Stimulates the Resorptive Activity of Osteoclasts in Culture.
    Pirapaharan DC; Søe K; Panwar P; Madsen JS; Bergmann ML; Overgaard M; Brömme D; Delaisse JM
    Calcif Tissue Int; 2019 Jan; 104(1):92-101. PubMed ID: 30194476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of rat cathepsin K in osteoclasts and resorption pits: inhibition of bone resorption and cathepsin K-activity by peptidyl vinyl sulfones.
    Xia L; Kilb J; Wex H; Li Z; Lipyansky A; Breuil V; Stein L; Palmer JT; Dempster DW; Brömme D
    Biol Chem; 1999 Jun; 380(6):679-87. PubMed ID: 10430032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblast proliferation and differentiation on dentin slices are modulated by pretreatment of the surface with tetracycline or osteoclasts.
    Schwartz Z; Lohmann CH; Wieland M; Cochran DL; Dean DD; Textor M; Bonewald LF; Boyan BD
    J Periodontol; 2000 Apr; 71(4):586-97. PubMed ID: 10807123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the collagenolytic activity of isolated osteoclasts by enzyme-linked immunosorbent assay.
    Foged NT; Delaissé JM; Hou P; Lou H; Sato T; Winding B; Bonde M
    J Bone Miner Res; 1996 Feb; 11(2):226-37. PubMed ID: 8822347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Azanitrile Cathepsin K Inhibitors: Effects on Cell Toxicity, Osteoblast-Induced Mineralization and Osteoclast-Mediated Bone Resorption.
    Ren ZY; Machuca-Gayet I; Domenget C; Buchet R; Wu Y; Jurdic P; Mebarek S
    PLoS One; 2015; 10(7):e0132513. PubMed ID: 26168340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+ monocytes that develop with RANKL into functional osteoclasts.
    Kindle L; Rothe L; Kriss M; Osdoby P; Collin-Osdoby P
    J Bone Miner Res; 2006 Feb; 21(2):193-206. PubMed ID: 16418775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of fluoride on the resorption of dentine by osteoclasts in vitro.
    Taylor ML; Maconnachie E; Frank K; Boyde A; Jones SJ
    J Bone Miner Res; 1990 Mar; 5 Suppl 1():S121-30. PubMed ID: 2339621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of parathyroid hormone (PTH) and PTH-related peptide on osteoclast resorption of bone slices in vitro: an analysis of pit size and the resorption focus.
    Murrills RJ; Stein LS; Fey CP; Dempster DW
    Endocrinology; 1990 Dec; 127(6):2648-53. PubMed ID: 2249618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration.
    Yu X; Huang Y; Collin-Osdoby P; Osdoby P
    J Bone Miner Res; 2003 Aug; 18(8):1404-18. PubMed ID: 12929930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered hematopoietic stem cell and osteoclast precursor frequency in cathepsin K null mice.
    Jacome-Galarza C; Soung do Y; Adapala NS; Pickarski M; Sanjay A; Duong LT; Lorenzo JA; Drissi H
    J Cell Biochem; 2014 Aug; 115(8):1449-57. PubMed ID: 24590570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Optimized Method to Generate Human Active Osteoclasts From Peripheral Blood Monocytes.
    Abdallah D; Jourdain ML; Braux J; Guillaume C; Gangloff SC; Jacquot J; Velard F
    Front Immunol; 2018; 9():632. PubMed ID: 29670619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ethanol on bone cells in vitro resulting in increased resorption.
    Cheung RC; Gray C; Boyde A; Jones SJ
    Bone; 1995 Jan; 16(1):143-7. PubMed ID: 7742073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.