BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26665090)

  • 1. An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles.
    Osaci M; Cacciola M
    Beilstein J Nanotechnol; 2015; 6():2173-82. PubMed ID: 26665090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the magnetic nanoparticle coating on the magnetic relaxation time.
    Osaci M; Cacciola M
    Beilstein J Nanotechnol; 2020; 11():1207-1216. PubMed ID: 32832316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of interacting magnetic nanoparticles: effective behavior from competition between Brownian and Néel relaxation.
    Ilg P; Kröger M
    Phys Chem Chem Phys; 2020 Oct; 22(39):22244-22259. PubMed ID: 33001111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field- and concentration-dependent relaxation of magnetic nanoparticles and optimality conditions for magnetic fluid hyperthermia.
    Ilg P; Kröger M
    Sci Rep; 2023 Oct; 13(1):16523. PubMed ID: 37783724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.
    Feng X; Jia G; Peng J; Huang L; Liang X; Zhang H; Liu Y; Zhang B; Zhang Y; Sun M; Li P; Miao Q; Wang Y; Xi L; Hu K; Li T; Hui H; Tian J
    Med Phys; 2023 Jul; 50(7):4651-4663. PubMed ID: 37293867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic particle hyperthermia: Néel relaxation in magnetic nanoparticles under circularly polarized field.
    de Châtel PF; Nándori I; Hakl J; Mészáros S; Vad K
    J Phys Condens Matter; 2009 Mar; 21(12):124202. PubMed ID: 21817444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjusting the Néel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia.
    Fabris F; Lohr JH; Lima E; de Almeida AA; Troiani H; Rodríguez LM; Vásquez Mansilla M; Aguirre M; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler E
    Nanotechnology; 2020 Oct; ():. PubMed ID: 33086203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.
    Xu H; Pan Y
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31615049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia.
    Torres TE; Lima E; Calatayud MP; Sanz B; Ibarra A; Fernández-Pacheco R; Mayoral A; Marquina C; Ibarra MR; Goya GF
    Sci Rep; 2019 Mar; 9(1):3992. PubMed ID: 30850704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium response of magnetic nanoparticles to time-varying magnetic fields: Contributions from Brownian and Néel processes.
    Ilg P
    Phys Rev E; 2024 Mar; 109(3-1):034603. PubMed ID: 38632745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications.
    Nguyen LH; Phong PT; Nam PH; Manh DH; Thanh NTK; Tung LD; Phuc NX
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33918815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ measurement of magnetization relaxation of internalized nanoparticles in live cells.
    Soukup D; Moise S; Céspedes E; Dobson J; Telling ND
    ACS Nano; 2015 Jan; 9(1):231-40. PubMed ID: 25562356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.
    Ota S; Kitaguchi R; Takeda R; Yamada T; Takemura Y
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles.
    Soetaert F; Kandala SK; Bakuzis A; Ivkov R
    Sci Rep; 2017 Jul; 7(1):6661. PubMed ID: 28751720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia.
    Kuncser A; Iacob N; Kuncser VE
    Beilstein J Nanotechnol; 2019; 10():1280-1289. PubMed ID: 31293865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of Brownian and Néel relaxation times on magnetic field strength.
    Deissler RJ; Wu Y; Martens MA
    Med Phys; 2014 Jan; 41(1):012301. PubMed ID: 24387522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles.
    Fabris F; Lima E; De Biasi E; Troiani HE; Vásquez Mansilla M; Torres TE; Fernández Pacheco R; Ibarra MR; Goya GF; Zysler RD; Winkler EL
    Nanoscale; 2019 Feb; 11(7):3164-3172. PubMed ID: 30520920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incidence of the Brownian Relaxation Process on the Magnetic Properties of Ferrofluids.
    Vajtai L; Nemes NM; Morales MDP; Molnár K; Pinke BG; Simon F
    Nanomaterials (Basel); 2024 Apr; 14(7):. PubMed ID: 38607168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical contribution of Néel and Brown relaxation to interpreting intracellular hyperthermia characteristics using superparamagnetic nanofluids.
    Jeun M; Kim YJ; Park KH; Paek SH; Bae S
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5719-25. PubMed ID: 23882824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.