BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26665599)

  • 1. [Proteomic analysis of curdlan-producing Agrobacterium sp. ATCC 31749 in response to dissolved oxygen].
    Dai X; Yang L; Zheng Z; Chen H; Zhan X
    Wei Sheng Wu Xue Bao; 2015 Aug; 55(8):1018-25. PubMed ID: 26665599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions.
    Zhang HT; Zhan XB; Zheng ZY; Wu JR; Yu XB; Jiang Y; Lin CC
    Appl Microbiol Biotechnol; 2011 Jul; 91(1):163-75. PubMed ID: 21472535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of uracil addition on proteomic profiles and 1,3-β-glucan production in Agrobacterium sp.
    Jin LH; Lee JH
    Biotechnol Appl Biochem; 2014; 61(3):280-8. PubMed ID: 24033749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749.
    Zhang HT; Zhan XB; Zheng ZY; Wu JR; English N; Yu XB; Lin CC
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):367-79. PubMed ID: 21739265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis.
    Ruffing AM; Chen RR
    Microb Cell Fact; 2012 Feb; 11():17. PubMed ID: 22305302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CrdR function in a curdlan-producing Agrobacterium sp. ATCC31749 strain.
    Yu X; Zhang C; Yang L; Zhao L; Lin C; Liu Z; Mao Z
    BMC Microbiol; 2015 Feb; 15(1):25. PubMed ID: 25880528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442.
    Liang Y; Zhu L; Ding H; Gao M; Zheng Z; Wu J; Zhan X
    Carbohydr Polym; 2017 Feb; 157():1687-1694. PubMed ID: 27987884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamine synthetase gene glnA plays a vital role in curdlan biosynthesis of Agrobacterium sp. CGMCC 11546.
    Zhang W; Gao H; Huang Y; Wu S; Tian J; Niu Y; Zou C; Jia C; Jin M; Huang J; Chang Z; Yang X; Jiang D
    Int J Biol Macromol; 2020 Dec; 165(Pt A):222-230. PubMed ID: 32987068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nitrogen source concentration on curdlan production by Agrobacterium sp. ATCC 31749 grown on prairie cordgrass hydrolysates.
    West TP
    Prep Biochem Biotechnol; 2016; 46(1):85-90. PubMed ID: 25397813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of curdlan-producing Agrobacterium sp. in response to pH downshift.
    Jin LH; Um HJ; Yin CJ; Kim YH; Lee JH
    J Biotechnol; 2008 Nov; 138(3-4):80-7. PubMed ID: 18824044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan production.
    Yu LJ; Wu JR; Zheng ZZ; Lin CC; Zhan XB
    Prikl Biokhim Mikrobiol; 2011; 47(5):537-43. PubMed ID: 22232894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methionine biosynthesis pathway genes affect curdlan biosynthesis of Agrobacterium sp. CGMCC 11546 via energy regeneration.
    Gao H; Zhang W; Zhang J; Huang Y; Zhang J; Tian J; Niu Y; Zou C; Jia C; Chang Z; Yang X; Jiang D
    Int J Biol Macromol; 2021 Aug; 185():821-831. PubMed ID: 34216670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of curdlan biosynthesis and nitrogenous compounds utilization characterized in ntrC mutant of Agrobacterium sp. ATCC 31749.
    Yu LJ; Wu JR; Zheng ZY; Zhan XB; Lin CC
    Curr Microbiol; 2011 Jul; 63(1):60-7. PubMed ID: 21533781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exopolysaccharide synthesis repressor genes (exoR and exoX) related to curdlan biosynthesis by Agrobacterium sp.
    Gao M; Liu Z; Zhao Z; Wang Z; Hu X; Jiang Y; Yan J; Li Z; Zheng Z; Zhan X
    Int J Biol Macromol; 2022 Apr; 205():193-202. PubMed ID: 35181324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose.
    Shin HD; Liu L; Kim MK; Park YI; Chen R
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1323-31. PubMed ID: 27387419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and improvement of curdlan produced by a high-yield mutant of Agrobacterium sp. ATCC 31749 based on whole-genome analysis.
    Gao H; Xie F; Zhang W; Tian J; Zou C; Jia C; Jin M; Huang J; Chang Z; Yang X; Jiang D
    Carbohydr Polym; 2020 Oct; 245():116486. PubMed ID: 32718606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Tween-80 on the production and structure of water-insoluble curdlan from Agrobacterium sp.
    Liang Y; Zhu L; Gao M; Zheng Z; Wu J; Zhan X
    Int J Biol Macromol; 2018 Jan; 106():611-619. PubMed ID: 28807687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved curdlan production with discarded bottom parts of Asparagus spear.
    Anane RF; Sun H; Zhao L; Wang L; Lin C; Mao Z
    Microb Cell Fact; 2017 Apr; 16(1):59. PubMed ID: 28388915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An increase of curdlan productivity by integration of carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation.
    Zheng ZY; Jiang Y; Zhan XB; Ma LW; Wu JR; Zhang LM; Lin CC
    Prikl Biokhim Mikrobiol; 2014; 50(1):44-51. PubMed ID: 25272751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of the polysaccharide curdlan by an Agrobacterium strain grown on a plant biomass hydrolysate.
    West TP; Peterson JL
    Can J Microbiol; 2014 Jan; 60(1):53-6. PubMed ID: 24392926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.