BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26666224)

  • 1. Quantitative proteomics signature profiling based on network contextualization.
    Bin Goh WW; Guo T; Aebersold R; Wong L
    Biol Direct; 2015 Dec; 10():71. PubMed ID: 26666224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuzzy-FishNET: a highly reproducible protein complex-based approach for feature selection in comparative proteomics.
    Goh WW
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):67. PubMed ID: 28117654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic investigation of intra-tumor heterogeneity using network-based contextualization - A case study on prostate cancer.
    Goh WWB; Zhao Y; Sue AC; Guo T; Wong L
    J Proteomics; 2019 Aug; 206():103446. PubMed ID: 31323421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics signature profiling (PSP): a novel contextualization approach for cancer proteomics.
    Goh WW; Lee YH; Ramdzan ZM; Sergot MJ; Chung M; Wong L
    J Proteome Res; 2012 Mar; 11(3):1571-81. PubMed ID: 22243476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating feature-selection stability in next-generation proteomics.
    Goh WW; Wong L
    J Bioinform Comput Biol; 2016 Oct; 14(5):1650029. PubMed ID: 27640811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing Clinical Proteomics via Analysis Based on Biological Complexes: A Tale of Five Paradigms.
    Goh WW; Wong L
    J Proteome Res; 2016 Sep; 15(9):3167-79. PubMed ID: 27454466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative phospho-proteomic profiling of hepatocyte growth factor (HGF)-MET signaling in colorectal cancer.
    Organ SL; Tong J; Taylor P; St-Germain JR; Navab R; Moran MF; Tsao MS
    J Proteome Res; 2011 Jul; 10(7):3200-11. PubMed ID: 21609022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated microRNA, mRNA, and protein expression profiling reveals microRNA regulatory networks in rat kidney treated with a carcinogenic dose of aristolochic acid.
    Li Z; Qin T; Wang K; Hackenberg M; Yan J; Gao Y; Yu LR; Shi L; Su Z; Chen T
    BMC Genomics; 2015 May; 16(1):365. PubMed ID: 25952319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway analysis of kidney cancer using proteomics and metabolic profiling.
    Perroud B; Lee J; Valkova N; Dhirapong A; Lin PY; Fiehn O; Kültz D; Weiss RH
    Mol Cancer; 2006 Nov; 5():64. PubMed ID: 17123452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein complex-based analysis is resistant to the obfuscating consequences of batch effects --- a case study in clinical proteomics.
    Goh WW; Wong L
    BMC Genomics; 2017 Mar; 18(Suppl 2):142. PubMed ID: 28361693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological network module-based model for the analysis of differential expression in shotgun proteomics.
    Xu J; Wang L; Li J
    J Proteome Res; 2014 Dec; 13(12):5743-50. PubMed ID: 25327611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the utility of Proteomics Signature Profiling (PSP) with Pathway Derived Subnets (PDSs), performance analysis and specialised ontologies.
    Goh WW; Fan M; Low HS; Sergot M; Wong L
    BMC Genomics; 2013 Jan; 14():35. PubMed ID: 23324392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic and proteomic profiling for biomarkers and signature profiles of toxicity.
    Merrick BA; Bruno ME
    Curr Opin Mol Ther; 2004 Dec; 6(6):600-7. PubMed ID: 15663324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression profiling of more than 3500 proteins of MSS-type colorectal cancer by stable isotope labeling and mass spectrometry.
    Kang UB; Yeom J; Kim HJ; Kim H; Lee C
    J Proteomics; 2012 Jun; 75(10):3050-62. PubMed ID: 22154799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorectal cancer atlas: An integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues.
    Chisanga D; Keerthikumar S; Pathan M; Ariyaratne D; Kalra H; Boukouris S; Mathew NA; Al Saffar H; Gangoda L; Ang CS; Sieber OM; Mariadason JM; Dasgupta R; Chilamkurti N; Mathivanan S
    Nucleic Acids Res; 2016 Jan; 44(D1):D969-74. PubMed ID: 26496946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression profiling-derived immunohistochemistry signature with high prognostic value in colorectal carcinoma.
    Chang W; Gao X; Han Y; Du Y; Liu Q; Wang L; Tan X; Zhang Q; Liu Y; Zhu Y; Yu Y; Fan X; Zhang H; Zhou W; Wang J; Fu C; Cao G
    Gut; 2014 Sep; 63(9):1457-67. PubMed ID: 24173294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection.
    Yasui Y; Pepe M; Thompson ML; Adam BL; Wright GL; Qu Y; Potter JD; Winget M; Thornquist M; Feng Z
    Biostatistics; 2003 Jul; 4(3):449-63. PubMed ID: 12925511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential protein expressions in renal cell carcinoma: new biomarker discovery by mass spectrometry.
    Siu KW; DeSouza LV; Scorilas A; Romaschin AD; Honey RJ; Stewart R; Pace K; Youssef Y; Chow TF; Yousef GM
    J Proteome Res; 2009 Aug; 8(8):3797-807. PubMed ID: 19610612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein profiling of microdomains purified from renal cell carcinoma and normal kidney tissue samples.
    Raimondo F; Morosi L; Chinello C; Perego R; Bianchi C; Albo G; Ferrero S; Rocco F; Magni F; Pitto M
    Mol Biosyst; 2012 Apr; 8(4):1007-16. PubMed ID: 22159573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Analysis of Label-Free and 8-Plex iTRAQ Approach for Quantitative Tissue Proteomic Analysis.
    Latosinska A; Vougas K; Makridakis M; Klein J; Mullen W; Abbas M; Stravodimos K; Katafigiotis I; Merseburger AS; Zoidakis J; Mischak H; Vlahou A; Jankowski V
    PLoS One; 2015; 10(9):e0137048. PubMed ID: 26331617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.