BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2666631)

  • 1. Inhibitory effect of a new mycotic agent, piritetrate on ergosterol biosynthesis in pathogenic fungi.
    Morita T; Iwata K; Nozawa Y
    J Med Vet Mycol; 1989; 27(1):17-25. PubMed ID: 2666631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of antifungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagrophytes: differential inhibitory sites of naphthiomate and miconazole.
    Morita T; Nozawa Y
    J Invest Dermatol; 1985 Nov; 85(5):434-7. PubMed ID: 3902987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific inhibition of fungal sterol biosynthesis by SF 86-327, a new allylamine antimycotic agent.
    Ryder NS
    Antimicrob Agents Chemother; 1985 Feb; 27(2):252-6. PubMed ID: 4039119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal activity of xanthones: evaluation of their effect on ergosterol biosynthesis by high-performance liquid chromatography.
    Pinto E; Afonso C; Duarte S; Vale-Silva L; Costa E; Sousa E; Pinto M
    Chem Biol Drug Des; 2011 Mar; 77(3):212-22. PubMed ID: 21244637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mode of antifungal action of tolnaftate.
    Barrett-Bee KJ; Lane AC; Turner RW
    J Med Vet Mycol; 1986 Apr; 24(2):155-60. PubMed ID: 3522841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate.
    Ryder NS; Frank I; Dupont MC
    Antimicrob Agents Chemother; 1986 May; 29(5):858-60. PubMed ID: 3524433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of allylamine antimycotic agents on fungal sterol biosynthesis measured by sterol side-chain methylation.
    Ryder NS
    J Gen Microbiol; 1985 Jul; 131(7):1595-602. PubMed ID: 3900280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo activities of piritetrate (M-732), a new antidermatophytic thiocarbamate.
    Iwata K; Yamashita T; Uehara H
    Antimicrob Agents Chemother; 1989 Dec; 33(12):2118-25. PubMed ID: 2619275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the antimycotic drug naftifine on growth of and sterol biosynthesis in Candida albicans.
    Ryder NS; Seidl G; Troke PF
    Antimicrob Agents Chemother; 1984 Apr; 25(4):483-7. PubMed ID: 6375557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulatory effect of cAMP on fungal ergosterol level and inhibitory activity of azole drugs.
    Sardari S; Mori Y; Kurosawa T; Daneshtalab M
    Can J Microbiol; 2003 May; 49(5):344-9. PubMed ID: 12897828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical mode of action and enantiomeric selectivity of SDZ 89-485, a new triazole antimycotic.
    Ryder NS
    J Med Vet Mycol; 1990; 28(5):385-94. PubMed ID: 2283585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of action of efinaconazole, a novel triazole antifungal agent.
    Tatsumi Y; Nagashima M; Shibanushi T; Iwata A; Kangawa Y; Inui F; Siu WJ; Pillai R; Nishiyama Y
    Antimicrob Agents Chemother; 2013 May; 57(5):2405-9. PubMed ID: 23459486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans.
    Georgopapadakou NH; Dix BA; Smith SA; Freudenberger J; Funke PT
    Antimicrob Agents Chemother; 1987 Jan; 31(1):46-51. PubMed ID: 3551826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of terbinafine-resistant Trichophyton rubrum isolates.
    Favre B; Ghannoum MA; Ryder NS
    Med Mycol; 2004 Dec; 42(6):525-9. PubMed ID: 15682641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of squalene epoxidase inhibitors on Candida albicans.
    Georgopapadakou NH; Bertasso A
    Antimicrob Agents Chemother; 1992 Aug; 36(8):1779-81. PubMed ID: 1416865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis.
    Van den Bossche H; Willemsens G; Cools W; Cornelissen F; Lauwers WF; van Cutsem JM
    Antimicrob Agents Chemother; 1980 Jun; 17(6):922-8. PubMed ID: 6250469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical changes associated with the antifungal action of the triazole ICI 153,066 on Candida albicans and Trichophyton quinckeanum.
    Barrett-Bee K; Newboult L; Pinder P
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):127-31. PubMed ID: 2060756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The novel azole R126638 is a selective inhibitor of ergosterol synthesis in Candida albicans, Trichophyton spp., and Microsporum canis.
    Vanden Bossche H; Ausma J; Bohets H; Vermuyten K; Willemsens G; Marichal P; Meerpoel L; Odds F; Borgers M
    Antimicrob Agents Chemother; 2004 Sep; 48(9):3272-8. PubMed ID: 15328084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel high energy intermediate analogues with triazasterol-related structures as inhibitors of ergosterol biosynthesis. III. Synthesis and antifungal activity of N4-alkyl-1,6,7,11b-tetrahydro-2H-pyrimido[4,3-a]isoquinolin-4-amine salts.
    Gössnitzer E; Punkenhofer A; Amon A; Favre B
    Eur J Pharm Sci; 2003 Jun; 19(2-3):151-64. PubMed ID: 12791418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two mechanisms of butenafine action in Candida albicans.
    Iwatani W; Arika T; Yamaguchi H
    Antimicrob Agents Chemother; 1993 Apr; 37(4):785-8. PubMed ID: 8494375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.