BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26666430)

  • 21. A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications.
    Solanki A; Das M; Thakore S
    Carbohydr Polym; 2018 Feb; 181():1003-1016. PubMed ID: 29253925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Starch based polyurethanes: A critical review updating recent literature.
    Zia F; Zia KM; Zuber M; Kamal S; Aslam N
    Carbohydr Polym; 2015 Dec; 134():784-98. PubMed ID: 26428186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyurethane-based drug delivery systems.
    Cherng JY; Hou TY; Shih MF; Talsma H; Hennink WE
    Int J Pharm; 2013 Jun; 450(1-2):145-62. PubMed ID: 23632262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials.
    Wang J; Dai D; Xie H; Li D; Xiong G; Zhang C
    Int J Nanomedicine; 2022; 17():6791-6819. PubMed ID: 36600880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A facile way to prepare anti-fouling and blood-compatible polyethersulfone membrane via blending with heparin-mimicking polyurethanes.
    Wang C; Wang R; Xu Y; Zhang M; Yang F; Sun S; Zhao C
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():1035-1045. PubMed ID: 28575937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications.
    Wen Y; Oh JK
    Macromol Rapid Commun; 2014 Nov; 35(21):1819-32. PubMed ID: 25283788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft.
    Han DK; Park K; Park KD; Ahn KD; Kim YH
    Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro studies of immobilized heparin and sulfonated polyurethane using epifluorescent video microscopy.
    Nojiri C; Kuroda S; Saito N; Park KD; Hagiwara K; Senshu K; Kido T; Sugiyama T; Kijima T; Kim YH
    ASAIO J; 1995; 41(3):M389-94. PubMed ID: 8573831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes.
    Solanki A; Mehta J; Thakore S
    Carbohydr Polym; 2014 Sep; 110():338-44. PubMed ID: 24906764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heparin-like macromolecules for the modification of anticoagulant biomaterials.
    Ran F; Nie S; Li J; Su B; Sun S; Zhao C
    Macromol Biosci; 2012 Jan; 12(1):116-25. PubMed ID: 21976247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical-physical characterization of polyurethane catheters modified with a novel antithrombin-heparin covalent complex.
    Du YJ; Berry LR; Chan AK
    J Biomater Sci Polym Ed; 2011; 22(17):2277-94. PubMed ID: 21092417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heparin--a key drug in the treatment of the circulatory degenerative diseases: controlling its action with polymers.
    Szczubiałka K; Kamiński K; Zasada K; Karewicz A; Nowakowska M
    Curr Pharm Des; 2012; 18(18):2591-606. PubMed ID: 22512445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating the properties of electrospun nanofibers made of hybride polymer containing anticoagulant drugs.
    Khalili Amand F; Esmaeili A
    Carbohydr Polym; 2020 Jan; 228():115397. PubMed ID: 31635726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes.
    Zhang C; Zhao K; Hu T; Cui X; Brown N; Boland T
    J Control Release; 2008 Oct; 131(2):128-36. PubMed ID: 18703098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in Waterborne Polyurethane-Based Biomaterials for Biomedical Applications.
    Shin EJ; Choi SM
    Adv Exp Med Biol; 2018; 1077():251-283. PubMed ID: 30357693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in the design and immobilization of heparin for biomedical application: A review.
    Gupta S; Puttaiahgowda YM; Deiglmayr L
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130743. PubMed ID: 38462098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications.
    Liang Y; Kiick KL
    Acta Biomater; 2014 Apr; 10(4):1588-600. PubMed ID: 23911941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and characterization of modified hydroxyapatite particles by heparin.
    Zhao DM; Wang YX; Chen ZY; Xu RW; Wu G; Yu DS
    Biomed Mater; 2008 Jun; 3(2):025016. PubMed ID: 18523341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembled aliphatic chain extended polyurethane nanobiohybrids: emerging hemocompatible biomaterials for sustained drug delivery.
    Mishra A; Singh SK; Dash D; Aswal VK; Maiti B; Misra M; Maiti P
    Acta Biomater; 2014 May; 10(5):2133-46. PubMed ID: 24374322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progress of Polysaccharide-Contained Polyurethanes for Biomedical Applications.
    Ju DB; Lee JC; Hwang SK; Cho CS; Kim HJ
    Tissue Eng Regen Med; 2022 Oct; 19(5):891-912. PubMed ID: 35819712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.