BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26666898)

  • 21. Magnetic vestibular stimulation influences resting-state fluctuations and induces visual-vestibular biases.
    Boegle R; Ertl M; Stephan T; Dieterich M
    J Neurol; 2017 May; 264(5):999-1001. PubMed ID: 28271404
    [No Abstract]   [Full Text] [Related]  

  • 22. A potential biomarker in sports-related concussion: brain functional connectivity alteration of the default-mode network measured with longitudinal resting-state fMRI over thirty days.
    Zhu DC; Covassin T; Nogle S; Doyle S; Russell D; Pearson RL; Monroe J; Liszewski CM; DeMarco JK; Kaufman DI
    J Neurotrauma; 2015 Mar; 32(5):327-41. PubMed ID: 25116397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain.
    Sforazzini F; Schwarz AJ; Galbusera A; Bifone A; Gozzi A
    Neuroimage; 2014 Feb; 87():403-15. PubMed ID: 24080504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring variations in functional connectivity of the resting state default mode network in mild traumatic brain injury.
    Nathan DE; Oakes TR; Yeh PH; French LM; Harper JF; Liu W; Wolfowitz RD; Wang BQ; Graner JL; Riedy G
    Brain Connect; 2015 Mar; 5(2):102-14. PubMed ID: 25222050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks.
    Karahanoğlu FI; Van De Ville D
    Nat Commun; 2015 Jul; 6():7751. PubMed ID: 26178017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The study of visual-oculomotor disturbances in otoneurological diagnosis].
    Kaźmierczak H; Zaborowski A
    Otolaryngol Pol; 1996; 50(1):58-65. PubMed ID: 9045134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance.
    Sala-Llonch R; Peña-Gómez C; Arenaza-Urquijo EM; Vidal-Piñeiro D; Bargalló N; Junqué C; Bartrés-Faz D
    Cortex; 2012 Oct; 48(9):1187-96. PubMed ID: 21872853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Components of vestibular cortical function.
    Klingner CM; Volk GF; Flatz C; Brodoehl S; Dieterich M; Witte OW; Guntinas-Lichius O
    Behav Brain Res; 2013 Jan; 236(1):194-199. PubMed ID: 22960258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acute unilateral loss of vestibular function.
    Fetter M
    Handb Clin Neurol; 2016; 137():219-29. PubMed ID: 27638073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypnotic modulation of resting state fMRI default mode and extrinsic network connectivity.
    Demertzi A; Soddu A; Faymonville ME; Bahri MA; Gosseries O; Vanhaudenhuyse A; Phillips C; Maquet P; Noirhomme Q; Luxen A; Laureys S
    Prog Brain Res; 2011; 193():309-22. PubMed ID: 21854971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Spontaneous and provoked nystagmus in healthy subjects: on the so-called "vestibular" form].
    Likhachev SA; Mar'enko IP
    Vestn Otorinolaringol; 2010; (6):21-5. PubMed ID: 21311454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Affective mentalizing and brain activity at rest in the behavioral variant of frontotemporal dementia.
    Caminiti SP; Canessa N; Cerami C; Dodich A; Crespi C; Iannaccone S; Marcone A; Falini A; Cappa SF
    Neuroimage Clin; 2015; 9():484-97. PubMed ID: 26594631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Electronystagmography aspects of peripheral and central vestibular syndromes].
    Demanez JP
    Acta Otorhinolaryngol Belg; 1986; 40(5):695-858. PubMed ID: 3492858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Different interaction modes for the default mode network revealed by resting state functional magnetic resonance imaging.
    Zuo N; Song M; Fan L; Eickhoff SB; Jiang T
    Eur J Neurosci; 2016 Jan; 43(1):78-88. PubMed ID: 26496204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Independent component model of the default-mode brain function: Assessing the impact of active thinking.
    Esposito F; Bertolino A; Scarabino T; Latorre V; Blasi G; Popolizio T; Tedeschi G; Cirillo S; Goebel R; Di Salle F
    Brain Res Bull; 2006 Oct; 70(4-6):263-9. PubMed ID: 17027761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Default-mode network functional connectivity is closely related to metabolic activity.
    Passow S; Specht K; Adamsen TC; Biermann M; Brekke N; Craven AR; Ersland L; Grüner R; Kleven-Madsen N; Kvernenes OH; Schwarzlmüller T; Olesen RA; Hugdahl K
    Hum Brain Mapp; 2015 Jun; 36(6):2027-38. PubMed ID: 25644693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vestibulo-ocular and optokinetic deficits in albinos with congenital nystagmus.
    Demer JL; Zee DS
    Invest Ophthalmol Vis Sci; 1984 Jun; 25(6):739-45. PubMed ID: 6609907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Default mode network as revealed with multiple methods for resting-state functional MRI analysis.
    Long XY; Zuo XN; Kiviniemi V; Yang Y; Zou QH; Zhu CZ; Jiang TZ; Yang H; Gong QY; Wang L; Li KC; Xie S; Zang YF
    J Neurosci Methods; 2008 Jun; 171(2):349-55. PubMed ID: 18486233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of effective connectivity in the default mode network at rest and during a memory task.
    Li X; Kehoe EG; McGinnity TM; Coyle D; Bokde AL
    Brain Connect; 2015 Feb; 5(1):60-7. PubMed ID: 25390185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.