BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 26666899)

  • 1. Contingent negative variation (CNV) associated with sensorimotor timing error correction.
    Jang J; Jones M; Milne E; Wilson D; Lee KH
    Neuroimage; 2016 Feb; 127():58-66. PubMed ID: 26666899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural responses to perturbations in visual and auditory metronomes during sensorimotor synchronization.
    Comstock DC; Balasubramaniam R
    Neuropsychologia; 2018 Aug; 117():55-66. PubMed ID: 29768189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain dynamics in the auditory oddball task as a function of stimulus intensity and task requirements.
    Barry RJ; Rushby JA; Smith JL; Clarke AR; Croft RJ
    Int J Psychophysiol; 2009 Sep; 73(3):313-25. PubMed ID: 19460406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain activity during interval timing depends on sensory structure.
    Pfeuty M; Ragot R; Pouthas V
    Brain Res; 2008 Apr; 1204():112-7. PubMed ID: 18336798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous theta burst stimulation over the left pre-motor cortex affects sensorimotor timing accuracy and supraliminal error correction.
    Bijsterbosch JD; Lee KH; Dyson-Sutton W; Barker AT; Woodruff PW
    Brain Res; 2011 Sep; 1410():101-11. PubMed ID: 21802662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between CNV and timing of an upcoming event.
    Pfeuty M; Ragot R; Pouthas V
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):106-11. PubMed ID: 15911131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurophysiological correlates of error correction in sensorimotor-synchronization.
    Praamstra P; Turgeon M; Hesse CW; Wing AM; Perryer L
    Neuroimage; 2003 Oct; 20(2):1283-97. PubMed ID: 14568497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repetition enhancement and memory effects for duration.
    Wiener M; Thompson JC
    Neuroimage; 2015 Jun; 113():268-78. PubMed ID: 25818689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cluster analysis of behavioural and event-related potentials during a contingent negative variation paradigm in remitting-relapsing and benign forms of multiple sclerosis.
    Gonzalez-Rosa JJ; Vazquez-Marrufo M; Vaquero E; Duque P; Borges M; Gomez-Gonzalez CM; Izquierdo G
    BMC Neurol; 2011 Jun; 11():64. PubMed ID: 21635741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response compatibility and the relationship between event-related potentials and the timing of a motor response.
    Goodin DS; Aminoff MJ; Chequer RS; Ortiz TA
    J Neurophysiol; 1996 Dec; 76(6):3705-13. PubMed ID: 8985868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroelectromagnetic signatures of the reproduction of supra-second durations.
    Kononowicz TW; Sander T; van Rijn H
    Neuropsychologia; 2015 Aug; 75():201-13. PubMed ID: 26057434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The anticipatory potential (contingent negative variation) as an indicator of neuronal information processing in relation to changes in slow potentials in the EEG].
    Korunka C; Bauer H; Wolek A; Leodolter M
    Z Exp Angew Psychol; 1990; 37(1):52-68. PubMed ID: 2333723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of involuntary auditory attention on visual task performance and brain activity.
    Alho K; Escera C; Díaz R; Yago E; Serra JM
    Neuroreport; 1997 Oct; 8(15):3233-7. PubMed ID: 9351649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory priming improves neural synchronization in auditory-motor entrainment.
    Crasta JE; Thaut MH; Anderson CW; Davies PL; Gavin WJ
    Neuropsychologia; 2018 Aug; 117():102-112. PubMed ID: 29792887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution spatiotemporal analysis of the contingent negative variation in simple or complex motor tasks and a non-motor task.
    Cui RQ; Egkher A; Huter D; Lang W; Lindinger G; Deecke L
    Clin Neurophysiol; 2000 Oct; 111(10):1847-59. PubMed ID: 11018502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow cortical potential shifts preceding sensorimotor interactions.
    Babiloni C; Brancucci A; Capotosto P; Romani GL; Arendt-Nielsen L; Chen AC; Rossini PM
    Brain Res Bull; 2005 Apr; 65(4):309-16. PubMed ID: 15811596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Teasing apart the anticipatory and consummatory processing of monetary incentives: An event-related potential study of reward dynamics.
    Novak KD; Foti D
    Psychophysiology; 2015 Nov; 52(11):1470-82. PubMed ID: 26223291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why do we make mistakes? Neurocognitive processes during the preparation-perception-action cycle and error-detection.
    Perri RL; Berchicci M; Lucci G; Spinelli D; Di Russo F
    Neuroimage; 2015 Jun; 113():320-8. PubMed ID: 25812715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferred EEG brain states at stimulus onset in a fixed interstimulus interval equiprobable auditory Go/NoGo task: a definitive study.
    Barry RJ; De Blasio FM; De Pascalis V; Karamacoska D
    Int J Psychophysiol; 2014 Oct; 94(1):42-58. PubMed ID: 25043955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duration adaptation modulates EEG correlates of subsequent temporal encoding.
    Li B; Chen Y; Xiao L; Liu P; Huang X
    Neuroimage; 2017 Feb; 147():143-151. PubMed ID: 27939922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.