BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26667092)

  • 1. Highly sensitive electrochemical immunosensor for IgG detection based on optimized rigid biocomposites.
    Montes R; Céspedes F; Baeza M
    Biosens Bioelectron; 2016 Apr; 78():505-512. PubMed ID: 26667092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New antibodies immobilization system into a graphite-polysulfone membrane for amperometric immunosensors.
    Ordóñez SS; Fàbregas E
    Biosens Bioelectron; 2007 Jan; 22(6):965-72. PubMed ID: 16704929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amperometric immunosensors based on rigid conducting immunocomposites.
    Santandreu M; Céspedes F; Alegret S; Martínez-Fàbregas E
    Anal Chem; 1997 Jun; 69(11):2080-5. PubMed ID: 9183175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube/polysulfone screen-printed electrochemical immunosensor.
    Sánchez S; Pumera M; Fàbregas E
    Biosens Bioelectron; 2007 Oct; 23(3):332-40. PubMed ID: 17560102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of biomarkers with carbon nanotube-based immunosensors.
    Sánchez S; Fàbregas E; Pumera M
    Methods Mol Biol; 2010; 625():227-37. PubMed ID: 20422394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amperometric immunosensor for ricin by using on graphite and carbon nanotube paste electrodes.
    Suresh S; Gupta AK; Rao VK; Kumar O; Vijayaraghavan R
    Talanta; 2010 Apr; 81(1-2):703-8. PubMed ID: 20188985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase in electrochemical immunosensing.
    Preechaworapun A; Dai Z; Xiang Y; Chailapakul O; Wang J
    Talanta; 2008 Jul; 76(2):424-31. PubMed ID: 18585301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical immunosensor for the determination of insulin-like growth factor-1 using electrodes modified with carbon nanotubes-poly(pyrrole propionic acid) hybrids.
    Serafín V; Agüí L; Yáñez-Sedeño P; Pingarrón JM
    Biosens Bioelectron; 2014 Feb; 52():98-104. PubMed ID: 24035852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical immunosensor for competitive detection of neuron specific enolase using functional carbon nanotubes and gold nanoprobe.
    Yu T; Cheng W; Li Q; Luo C; Yan L; Zhang D; Yin Y; Ding S; Ju H
    Talanta; 2012 May; 93():433-8. PubMed ID: 22483934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay.
    Liu Y; Liu Y; Feng H; Wu Y; Joshi L; Zeng X; Li J
    Biosens Bioelectron; 2012 May; 35(1):63-68. PubMed ID: 22464918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sol-gel-derived thick-film amperometric immunosensors.
    Wang J; Pamidi PV; Rogers KR
    Anal Chem; 1998 Mar; 70(6):1171-5. PubMed ID: 9530007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioelectrochemistry of heme peptide at seamless three-dimensional carbon nanotubes/graphene hybrid films for highly sensitive electrochemical biosensing.
    Komori K; Terse-Thakoor T; Mulchandani A
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3647-54. PubMed ID: 25659160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Sensitive and Disposable Graphene Oxide Electrochemical Immunosensor for Label-free Detection of Human Immunoglobulin G.
    Jumpathong W; Jakmunee J; Ounnunkad K
    Anal Sci; 2016; 32(3):323-8. PubMed ID: 26960613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of mesoporous core-shell Pd@Pt nanoparticles/amino group functionalized graphene nanocomposite.
    Li M; Wang P; Li F; Chu Q; Li Y; Dong Y
    Biosens Bioelectron; 2017 Jan; 87():752-759. PubMed ID: 27649331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphite-epoxy electrodes modified with functionalised carbon nanotubes and chitosan for the rapid electrochemical determination of dipyrone.
    Pauliukaite R; Ghica ME; Fatibello-Filho O; Brett CM
    Comb Chem High Throughput Screen; 2010 Aug; 13(7):590-8. PubMed ID: 20402639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate.
    Zhang S; Huang N; Lu Q; Liu M; Li H; Zhang Y; Yao S
    Biosens Bioelectron; 2016 Mar; 77():1078-85. PubMed ID: 26556185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor.
    Pérez López B; Merkoçi A
    Analyst; 2009 Jan; 134(1):60-4. PubMed ID: 19082175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedimetric immunoglobulin G immunosensor based on chemically modified graphenes.
    Loo AH; Bonanni A; Ambrosi A; Poh HL; Pumera M
    Nanoscale; 2012 Feb; 4(3):921-5. PubMed ID: 22186761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive electrochemical immunosensor for ochratoxin A using gold colloid-mediated hapten immobilization.
    Liu XP; Deng YJ; Jin XY; Chen LG; Jiang JH; Shen GL; Yu RQ
    Anal Biochem; 2009 Jun; 389(1):63-8. PubMed ID: 19303858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode.
    Salimi A; Compton RG; Hallaj R
    Anal Biochem; 2004 Oct; 333(1):49-56. PubMed ID: 15351279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.