These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 26667235)
1. Mechanical mixtures of metal oxides and phosphorus pentoxide as novel precursors for the synthesis of transition-metal phosphides. Guo L; Zhao Y; Yao Z Dalton Trans; 2016 Jan; 45(3):1225-32. PubMed ID: 26667235 [TBL] [Abstract][Full Text] [Related]
2. Novel synthesis of dispersed molybdenum and nickel phosphides from thermal carbonization of metal- and phosphorus-containing resins. Yao Z; Tong J; Qiao X; Jiang J; Zhao Y; Liu D; Zhang Y; Wang H Dalton Trans; 2015 Nov; 44(44):19383-91. PubMed ID: 26501890 [TBL] [Abstract][Full Text] [Related]
3. Chalcogen-Based Precursors for Transition Metal (Co, Ni) Phosphides: (Di)chalcogenide-to-Phosphide Transformation via Chemical Extraction of Chalcogenides. Khan MD; Shombe GB; Khoza SH; Ayom GE; Revaprasadu N Inorg Chem; 2024 Aug; 63(31):14495-14508. PubMed ID: 39042764 [TBL] [Abstract][Full Text] [Related]
4. One-step synthesis of nickel and cobalt phosphide nanomaterials via decomposition of hexamethylenetetramine-containing precursors. Yao Z; Wang G; Shi Y; Zhao Y; Jiang J; Zhang Y; Wang H Dalton Trans; 2015 Aug; 44(31):14122-9. PubMed ID: 26172527 [TBL] [Abstract][Full Text] [Related]
5. A novel synthetic route to transition metal phosphide nanoparticles. Yao Z; Li M; Wang X; Qiao X; Zhu J; Zhao Y; Wang G; Yin J; Wang H Dalton Trans; 2015 Mar; 44(12):5503-9. PubMed ID: 25697219 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of Nickel Phosphide Electrocatalysts from Hybrid Metal Phosphonates. Zhang R; Russo PA; Feist M; Amsalem P; Koch N; Pinna N ACS Appl Mater Interfaces; 2017 Apr; 9(16):14013-14022. PubMed ID: 28357856 [TBL] [Abstract][Full Text] [Related]
7. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels. Yang Y; Ochoa-Hernández C; de la Peña O'Shea VA; Pizarro P; Coronado JM; Serrano DP J Nanosci Nanotechnol; 2015 Sep; 15(9):6642-50. PubMed ID: 26716223 [TBL] [Abstract][Full Text] [Related]
8. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors. Li X; Elshahawy AM; Guan C; Wang J Small; 2017 Oct; 13(39):. PubMed ID: 28834280 [TBL] [Abstract][Full Text] [Related]
9. Expedited Synthesis of Metal Phosphides Maximizes Dispersion, Air Stability, and Catalytic Performance in Selective Hydrogenation. Karam L; Farès C; Weidenthaler C; Neumann CN Angew Chem Int Ed Engl; 2024 Aug; 63(33):e202404292. PubMed ID: 38860426 [TBL] [Abstract][Full Text] [Related]
10. Understanding the Reduction of Transition-Metal Phosphates to Transition-Metal Phosphides by Combining Temperature-Programmed Reduction and Infrared Spectroscopy. Sheng Q; Li X; Prins R; Liu C; Hao Q; Chen S Angew Chem Int Ed Engl; 2021 May; 60(20):11180-11183. PubMed ID: 33656230 [TBL] [Abstract][Full Text] [Related]
11. Phase-Controllable Cobalt Phosphides Induced through Hydrogel for Higher Lithium Storages. Guo T; Wang C; Wu H; Lee J; Zou G; Hou H; Sun X; Silvester DS; Ji X Inorg Chem; 2020 May; 59(9):6471-6480. PubMed ID: 32323981 [TBL] [Abstract][Full Text] [Related]
12. Oxidation does not (always) kill reactivity of transition metals: solution-phase conversion of nanoscale transition metal oxides to phosphides and sulfides. Muthuswamy E; Brock SL J Am Chem Soc; 2010 Nov; 132(45):15849-51. PubMed ID: 20964294 [TBL] [Abstract][Full Text] [Related]
13. Microbial-Phosphorus-Enabled Synthesis of Phosphide Nanocomposites for Efficient Electrocatalysts. Zhang TQ; Liu J; Huang LB; Zhang XD; Sun YG; Liu XC; Bin DS; Chen X; Cao AM; Hu JS; Wan LJ J Am Chem Soc; 2017 Aug; 139(32):11248-11253. PubMed ID: 28753287 [TBL] [Abstract][Full Text] [Related]
14. 2D tetragonal transition-metal phosphides: an ideal platform to screen metal shrouded crystals for multifunctional applications. Liu Q; Xing J; Jiang Z; Jiang X; Wang Y; Zhao J Nanoscale; 2020 Mar; 12(12):6776-6784. PubMed ID: 32167515 [TBL] [Abstract][Full Text] [Related]
15. Development of Ferromagnetic Materials Containing Co Abd-El-Aziz AS; Benaaisha MR; Abdelbaky MSM; Martinez-Blanco D; García-Granda S; Abdelghani AA; Abdel-Rahman LH; Bissessur R Molecules; 2021 Nov; 26(21):. PubMed ID: 34771141 [TBL] [Abstract][Full Text] [Related]
16. Ru Modulation Effects in the Synthesis of Unique Rod-like Ni@Ni Liu Y; Liu S; Wang Y; Zhang Q; Gu L; Zhao S; Xu D; Li Y; Bao J; Dai Z J Am Chem Soc; 2018 Feb; 140(8):2731-2734. PubMed ID: 29415541 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of mesoporous metal oxide by the thermal decomposition of oxalate precursor. Guo L; Arafune H; Teramae N Langmuir; 2013 Apr; 29(13):4404-12. PubMed ID: 23480232 [TBL] [Abstract][Full Text] [Related]
18. Laser ablation synthesis of new gold phosphides using red phosphorus and nanogold as precursors. Laser desorption ionisation time-of-flight mass spectrometry. Panyala NR; Peña-Méndez EM; Havel J Rapid Commun Mass Spectrom; 2012 May; 26(9):1100-8. PubMed ID: 22467460 [TBL] [Abstract][Full Text] [Related]
19. Tunable Synthesis of Metal-Rich and Phosphorus-Rich Nickel Phosphides and Their Comparative Evaluation as Hydrogen Evolution Electrocatalysts. Liyanage IA; Flores AV; Gillan EG Inorg Chem; 2023 Mar; 62(12):4947-4959. PubMed ID: 36898368 [TBL] [Abstract][Full Text] [Related]
20. Synthetic levers enabling independent control of phase, size, and morphology in nickel phosphide nanoparticles. Muthuswamy E; Savithra GH; Brock SL ACS Nano; 2011 Mar; 5(3):2402-11. PubMed ID: 21381759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]