These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 26667244)
1. Biomass-to-biocrude on a chip via hydrothermal liquefaction of algae. Cheng X; Ooms MD; Sinton D Lab Chip; 2016 Jan; 16(2):256-60. PubMed ID: 26667244 [TBL] [Abstract][Full Text] [Related]
2. Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae. Faeth JL; Savage PE Bioresour Technol; 2016 Apr; 206():290-293. PubMed ID: 26879204 [TBL] [Abstract][Full Text] [Related]
3. A quantitative kinetic model for the fast and isothermal hydrothermal liquefaction of Nannochloropsis sp. Hietala DC; Faeth JL; Savage PE Bioresour Technol; 2016 Aug; 214():102-111. PubMed ID: 27128195 [TBL] [Abstract][Full Text] [Related]
4. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449 [TBL] [Abstract][Full Text] [Related]
5. Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae. Xu D; Savage PE Bioresour Technol; 2017 Sep; 239():1-6. PubMed ID: 28500883 [TBL] [Abstract][Full Text] [Related]
6. Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products. Muppaneni T; Reddy HK; Selvaratnam T; Dandamudi KPR; Dungan B; Nirmalakhandan N; Schaub T; Omar Holguin F; Voorhies W; Lammers P; Deng S Bioresour Technol; 2017 Jan; 223():91-97. PubMed ID: 27788432 [TBL] [Abstract][Full Text] [Related]
7. Single- and two-step hydrothermal liquefaction of microalgae in a semi-continuous reactor: Effect of the operating parameters. Prapaiwatcharapan K; Sunphorka S; Kuchonthara P; Kangvansaichol K; Hinchiranan N Bioresour Technol; 2015 Sep; 191():426-32. PubMed ID: 25913031 [TBL] [Abstract][Full Text] [Related]
8. Effect of acidic, neutral and alkaline conditions on product distribution and biocrude oil chemistry from hydrothermal liquefaction of microalgae. Zhang B; He Z; Chen H; Kandasamy S; Xu Z; Hu X; Guo H Bioresour Technol; 2018 Dec; 270():129-137. PubMed ID: 30216922 [TBL] [Abstract][Full Text] [Related]
9. A general kinetic model for the hydrothermal liquefaction of microalgae. Valdez PJ; Tocco VJ; Savage PE Bioresour Technol; 2014 Jul; 163():123-7. PubMed ID: 24793402 [TBL] [Abstract][Full Text] [Related]
10. Laboratory Conversion of Cultivated Oleaginous Organisms into Biocrude for Biofuel Applications. Blessing E; Jena U; Chinnasamy S Methods Mol Biol; 2019; 1995():183-193. PubMed ID: 31148130 [TBL] [Abstract][Full Text] [Related]
11. Influence of strain-specific parameters on hydrothermal liquefaction of microalgae. López Barreiro D; Zamalloa C; Boon N; Vyverman W; Ronsse F; Brilman W; Prins W Bioresour Technol; 2013 Oct; 146():463-471. PubMed ID: 23958678 [TBL] [Abstract][Full Text] [Related]
12. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Leng L; Li J; Wen Z; Zhou W Bioresour Technol; 2018 May; 256():529-542. PubMed ID: 29459104 [TBL] [Abstract][Full Text] [Related]
13. Ni-Ru/CeO Xu D; Guo S; Liu L; Hua H; Guo Y; Wang S; Jing Z Biomed Res Int; 2018; 2018():8376127. PubMed ID: 29854797 [TBL] [Abstract][Full Text] [Related]
14. Hydrothermal co-liquefaction of microalgae, sugarcane bagasse, brewer's spent grain, and sludge from a paper recycling mill: Modeling and evaluation of biocrude and biochar yield. Bassoli SC; Sanson AL; Naves FL; Amaral MS J Environ Manage; 2024 Apr; 356():120626. PubMed ID: 38518491 [TBL] [Abstract][Full Text] [Related]
15. Biogas liquid digestate grown Chlorella sp. for biocrude oil production via hydrothermal liquefaction. Li H; Wang M; Wang X; Zhang Y; Lu H; Duan N; Li B; Zhang D; Dong T; Liu Z Sci Total Environ; 2018 Sep; 635():70-77. PubMed ID: 29660729 [TBL] [Abstract][Full Text] [Related]
17. Co-liquefaction of mixed culture microalgal strains under sub-critical water conditions. Dandamudi KPR; Muppaneni T; Sudasinghe N; Schaub T; Holguin FO; Lammers PJ; Deng S Bioresour Technol; 2017 Jul; 236():129-137. PubMed ID: 28399416 [TBL] [Abstract][Full Text] [Related]
18. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction. López Barreiro D; Samorì C; Terranella G; Hornung U; Kruse A; Prins W Bioresour Technol; 2014 Dec; 174():256-65. PubMed ID: 25463806 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase. Patel B; Guo M; Chong C; Sarudin SHM; Hellgardt K Sci Total Environ; 2016 Oct; 568():489-497. PubMed ID: 27318079 [TBL] [Abstract][Full Text] [Related]
20. Near- and supercritical ethanol treatment of biocrude from hydrothermal liquefaction of microalgae. Yang L; Li Y; Savage PE Bioresour Technol; 2016 Jul; 211():779-82. PubMed ID: 27055767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]