BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 26667776)

  • 1. Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes.
    Sun L; Su T; Xu L; Du HB
    Phys Chem Chem Phys; 2016 Jan; 18(3):1521-5. PubMed ID: 26667776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes.
    Wang L; Gao B; Peng C; Peng X; Fu J; Chu PK; Huo K
    Nanoscale; 2015 Sep; 7(33):13840-7. PubMed ID: 26098990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of a Si/SiO
    Zeng L; Liu R; Han L; Luo F; Chen X; Wang J; Qian Q; Chen Q; Wei M
    Chemistry; 2018 Apr; 24(19):4841-4848. PubMed ID: 29194824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery.
    Li X; Xing Y; Xu J; Deng Q; Shao LH
    Chem Commun (Camb); 2020 Jan; 56(3):364-367. PubMed ID: 31802084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries.
    Ma X; Liu M; Gan L; Tripathi PK; Zhao Y; Zhu D; Xu Z; Chen L
    Phys Chem Chem Phys; 2014 Mar; 16(9):4135-42. PubMed ID: 24448656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Synthesis of Yolk-Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries.
    Guo S; Hu X; Hou Y; Wen Z
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42084-42092. PubMed ID: 29120163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Si/Ti2O3/Reduced Graphene Oxide Nanocomposite Anodes for Lithium-Ion Batteries with Highly Enhanced Cyclic Stability.
    Park AR; Son DY; Kim JS; Lee JY; Park NG; Park J; Lee JK; Yoo PJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18483-90. PubMed ID: 26244752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries.
    Zhou M; Pu F; Wang Z; Cai T; Chen H; Zhang H; Guan S
    Phys Chem Chem Phys; 2013 Jul; 15(27):11394-401. PubMed ID: 23740151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries.
    Huang S; Cheong LZ; Wang D; Shen C
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23672-23678. PubMed ID: 28661118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries.
    Chen Y; Qian J; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3753-8. PubMed ID: 22757774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.
    Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.
    Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles.
    Wu H; Yu G; Pan L; Liu N; McDowell MT; Bao Z; Cui Y
    Nat Commun; 2013; 4():1943. PubMed ID: 23733138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium Monoxide-Stabilized Silicon Nanoparticles with a Litchi-like Structure as an Advanced Anode for Li-ion Batteries.
    Hu J; Wang Q; Fu L; Rajagopalan R; Cui Y; Chen H; Yuan H; Tang Y; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48467-48475. PubMed ID: 33052650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries.
    Zhou J; Qian T; Wang M; Xu N; Zhang Q; Li Q; Yan C
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5358-65. PubMed ID: 26863089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability.
    Fang S; Shen L; Tong Z; Zheng H; Zhang F; Zhang X
    Nanoscale; 2015 Apr; 7(16):7409-14. PubMed ID: 25826238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical doping of a core-shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode.
    Lin HY; Li CH; Wang DY; Chen CC
    Nanoscale; 2016 Jan; 8(3):1280-7. PubMed ID: 26677004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-Size Silicon Nanocrystal-Embedded SiO(x) Nanocomposite as a High-Capacity Lithium Storage Material.
    Park E; Yoo H; Lee J; Park MS; Kim YJ; Kim H
    ACS Nano; 2015 Jul; 9(7):7690-6. PubMed ID: 26132999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.