These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1025 related articles for article (PubMed ID: 26667878)
1. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates. Mathewson PD; Moyer-Horner L; Beever EA; Briscoe NJ; Kearney M; Yahn JM; Porter WP Glob Chang Biol; 2017 Mar; 23(3):1048-1064. PubMed ID: 27500587 [TBL] [Abstract][Full Text] [Related]
3. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas. Castillo JA; Epps CW; Jeffress MR; Ray C; Rodhouse TJ; Schwalm D Ecol Appl; 2016 Sep; 26(6):1660-1676. PubMed ID: 27755691 [TBL] [Abstract][Full Text] [Related]
4. The idiosyncrasies of place: geographic variation in the climate-distribution relationships of the American pika. Jeffress MR; Rodhouse TJ; Ray C; Wolff S; Epps CW Ecol Appl; 2013 Jun; 23(4):864-78. PubMed ID: 23865236 [TBL] [Abstract][Full Text] [Related]
5. Climate Tolerances and Habitat Requirements Jointly Shape the Elevational Distribution of the American Pika (Ochotona princeps), with Implications for Climate Change Effects. Yandow LH; Chalfoun AD; Doak DF PLoS One; 2015; 10(8):e0131082. PubMed ID: 26244851 [TBL] [Abstract][Full Text] [Related]
6. Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Castillo JA; Epps CW; Davis AR; Cushman SA Mol Ecol; 2014 Feb; 23(4):843-56. PubMed ID: 24383818 [TBL] [Abstract][Full Text] [Related]
7. Factors influencing distributional shifts and abundance at the range core of a climate-sensitive mammal. Billman PD; Beever EA; McWethy DB; Thurman LL; Wilson KC Glob Chang Biol; 2021 Oct; 27(19):4498-4515. PubMed ID: 34236759 [TBL] [Abstract][Full Text] [Related]
8. Apparent climate-mediated loss and fragmentation of core habitat of the American pika in the Northern Sierra Nevada, California, USA. Stewart JAE; Wright DH; Heckman KA PLoS One; 2017; 12(8):e0181834. PubMed ID: 28854268 [TBL] [Abstract][Full Text] [Related]
9. Spatially explicit models of dynamic histories: examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American Pika. Brown JL; Knowles LL Mol Ecol; 2012 Aug; 21(15):3757-75. PubMed ID: 22702844 [TBL] [Abstract][Full Text] [Related]
10. Species-free species distribution models describe macroecological properties of protected area networks. Robinson JL; Fordyce JA PLoS One; 2017; 12(3):e0173443. PubMed ID: 28301488 [TBL] [Abstract][Full Text] [Related]
11. Colonization from divergent ancestors: glaciation signatures on contemporary patterns of genomic variation in Collared Pikas (Ochotona collaris). Lanier HC; Massatti R; He Q; Olson LE; Knowles LL Mol Ecol; 2015 Jul; 24(14):3688-705. PubMed ID: 26096099 [TBL] [Abstract][Full Text] [Related]
13. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts. Tanner EP; Papeş M; Elmore RD; Fuhlendorf SD; Davis CA PLoS One; 2017; 12(9):e0184316. PubMed ID: 28886075 [TBL] [Abstract][Full Text] [Related]
14. Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Franklin J; Davis FW; Ikegami M; Syphard AD; Flint LE; Flint AL; Hannah L Glob Chang Biol; 2013 Feb; 19(2):473-83. PubMed ID: 23504785 [TBL] [Abstract][Full Text] [Related]
15. Ecological consequences of anomalies in atmospheric moisture and snowpack. Johnston AN; Bruggeman JE; Beers AT; Beever EA; Christophersen RG; Ransom JI Ecology; 2019 Apr; 100(4):e02638. PubMed ID: 30710338 [TBL] [Abstract][Full Text] [Related]
16. Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change. Lu WX; Wang ZZ; Hu XY; Rao GY Sci Total Environ; 2024 Feb; 912():169501. PubMed ID: 38145682 [TBL] [Abstract][Full Text] [Related]
17. Predictors of Current and Longer-Term Patterns of Abundance of American Pikas (Ochotona princeps) across a Leading-Edge Protected Area. Moyer-Horner L; Beever EA; Johnson DH; Biel M; Belt J PLoS One; 2016; 11(11):e0167051. PubMed ID: 27902732 [TBL] [Abstract][Full Text] [Related]
18. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly. Fourcade Y; Ranius T; Öckinger E J Anim Ecol; 2017 Oct; 86(6):1339-1351. PubMed ID: 28796909 [TBL] [Abstract][Full Text] [Related]
19. Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order lagomorpha. Leach K; Kelly R; Cameron A; Montgomery WI; Reid N PLoS One; 2015; 10(4):e0122267. PubMed ID: 25874407 [TBL] [Abstract][Full Text] [Related]
20. Testing alternative models of climate-mediated extirpations. Beever EA; Ray C; Mote PW; Wilkening JL Ecol Appl; 2010 Jan; 20(1):164-78. PubMed ID: 20349838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]