BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 26668313)

  • 1. Structural and Biochemical Insight into the Mechanism of Rv2837c from Mycobacterium tuberculosis as a c-di-NMP Phosphodiesterase.
    He Q; Wang F; Liu S; Zhu D; Cong H; Gao F; Li B; Wang H; Lin Z; Liao J; Gu L
    J Biol Chem; 2016 Feb; 291(7):3668-81. PubMed ID: 26668313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase.
    Wang F; He Q; Su K; Wei T; Xu S; Gu L
    Biochem J; 2018 Jan; 475(1):191-205. PubMed ID: 29203646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Rv0805 gene from Mycobacterium tuberculosis encodes a 3',5'-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis.
    Shenoy AR; Sreenath N; Podobnik M; Kovacevic M; Visweswariah SS
    Biochemistry; 2005 Dec; 44(48):15695-704. PubMed ID: 16313172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity in cyclic nucleotide phosphodiesterase isoenzyme families.
    Manganiello VC; Murata T; Taira M; Belfrage P; Degerman E
    Arch Biochem Biophys; 1995 Sep; 322(1):1-13. PubMed ID: 7574662
    [No Abstract]   [Full Text] [Related]  

  • 5. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases.
    Lovering AL; Capeness MJ; Lambert C; Hobley L; Sockett RE
    mBio; 2011; 2(5):. PubMed ID: 21990613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Phosphodiesterases of cyclic GMP].
    Wróblewska H; Gorczyca WA
    Postepy Hig Med Dosw; 2001; 55(5):611-27. PubMed ID: 11795198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular determinants of cGMP binding to chicken cone photoreceptor phosphodiesterase.
    Huang D; Hinds TR; Martinez SE; Doneanu C; Beavo JA
    J Biol Chem; 2004 Nov; 279(46):48143-51. PubMed ID: 15331594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The GDP-switched GAF domain of DcpA modulates the concerted synthesis/hydrolysis of c-di-GMP in
    Chen HJ; Li N; Luo Y; Jiang YL; Zhou CZ; Chen Y; Li Q
    Biochem J; 2018 Apr; 475(7):1295-1308. PubMed ID: 29555845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis.
    Shenoy AR; Capuder M; Draskovic P; Lamba D; Visweswariah SS; Podobnik M
    J Mol Biol; 2007 Jan; 365(1):211-25. PubMed ID: 17059828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A.
    Soderling SH; Bayuga SJ; Beavo JA
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):7071-6. PubMed ID: 10359840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Luminescence-Based Coupled Enzyme Assay Enables High-Throughput Quantification of the Bacterial Second Messenger 3'3'-Cyclic-Di-AMP.
    Zaver SA; Pollock AJ; Boradia VM; Woodward JJ
    Chembiochem; 2021 Mar; 22(6):1030-1041. PubMed ID: 33142009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases.
    Zhang KY; Card GL; Suzuki Y; Artis DR; Fong D; Gillette S; Hsieh D; Neiman J; West BL; Zhang C; Milburn MV; Kim SH; Schlessinger J; Bollag G
    Mol Cell; 2004 Jul; 15(2):279-86. PubMed ID: 15260978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased cyclic nucleotide phosphodiesterase activity in a mutant S49 lymphoma cell. Characterization and comparison with wild type enzyme activity.
    Brothers VM; Walker N; Bourne HR
    J Biol Chem; 1982 Aug; 257(16):9349-55. PubMed ID: 6286616
    [No Abstract]   [Full Text] [Related]  

  • 14. Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre.
    Bellini D; Caly DL; McCarthy Y; Bumann M; An SQ; Dow JM; Ryan RP; Walsh MA
    Mol Microbiol; 2014 Jan; 91(1):26-38. PubMed ID: 24176013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila cyclic nucleotide phosphodiesterases.
    Davis RL; Kauvar LM
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():393-402. PubMed ID: 6326533
    [No Abstract]   [Full Text] [Related]  

  • 16. Formation and dimerization of the phosphodiesterase active site of the Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator.
    Phippen CW; Mikolajek H; Schlaefli HG; Keevil CW; Webb JS; Tews I
    FEBS Lett; 2014 Dec; 588(24):4631-6. PubMed ID: 25447517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria.
    Zhang Y; Yang J; Bai G
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains.
    Schmidt AJ; Ryjenkov DA; Gomelsky M
    J Bacteriol; 2005 Jul; 187(14):4774-81. PubMed ID: 15995192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tlr0485 is a cAMP-activated c-di-GMP phosphodiesterase in a cyanobacterium Thermosynechococcus.
    Enomoto G; Kamiya A; Okuda Y; Narikawa R; Ikeuchi M
    J Gen Appl Microbiol; 2020 Jun; 66(2):147-152. PubMed ID: 32224605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity.
    Xu RX; Hassell AM; Vanderwall D; Lambert MH; Holmes WD; Luther MA; Rocque WJ; Milburn MV; Zhao Y; Ke H; Nolte RT
    Science; 2000 Jun; 288(5472):1822-5. PubMed ID: 10846163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.