These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 26668375)
1. Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation. Yong-Villalobos L; González-Morales SI; Wrobel K; Gutiérrez-Alanis D; Cervantes-Peréz SA; Hayano-Kanashiro C; Oropeza-Aburto A; Cruz-Ramírez A; Martínez O; Herrera-Estrella L Proc Natl Acad Sci U S A; 2015 Dec; 112(52):E7293-302. PubMed ID: 26668375 [TBL] [Abstract][Full Text] [Related]
2. Phosphate starvation induces DNA methylation in the vicinity of cis-acting elements known to regulate the expression of phosphate-responsive genes. Yong-Villalobos L; Cervantes-Pérez SA; Gutiérrez-Alanis D; Gonzáles-Morales S; Martínez O; Herrera-Estrella L Plant Signal Behav; 2016 May; 11(5):e1173300. PubMed ID: 27185363 [TBL] [Abstract][Full Text] [Related]
3. AtMBD4: A methylated DNA binding protein negatively regulates a subset of phosphate starvation genes. Parida AP; Sharma A; Sharma AK J Biosci; 2019 Mar; 44(1):. PubMed ID: 30837365 [TBL] [Abstract][Full Text] [Related]
4. Comparative expression profiling reveals a role of the root apoplast in local phosphate response. Hoehenwarter W; Mönchgesang S; Neumann S; Majovsky P; Abel S; Müller J BMC Plant Biol; 2016 Apr; 16():106. PubMed ID: 27121119 [TBL] [Abstract][Full Text] [Related]
5. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. Remy E; Cabrito TR; Batista RA; Teixeira MC; Sá-Correia I; Duque P New Phytol; 2012 Jul; 195(2):356-371. PubMed ID: 22578268 [TBL] [Abstract][Full Text] [Related]
6. Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level. Kuo HF; Chang TY; Chiang SF; Wang WD; Charng YY; Chiou TJ Plant J; 2014 Nov; 80(3):503-15. PubMed ID: 25155524 [TBL] [Abstract][Full Text] [Related]
7. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis. Wang L; ZengJ HQ; Song J; Feng SJ; Yang ZM Plant Sci; 2015 Sep; 238():273-85. PubMed ID: 26259194 [TBL] [Abstract][Full Text] [Related]
8. Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis. Rouached H; Stefanovic A; Secco D; Bulak Arpat A; Gout E; Bligny R; Poirier Y Plant J; 2011 Feb; 65(4):557-70. PubMed ID: 21288266 [TBL] [Abstract][Full Text] [Related]
9. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Guo M; Ruan W; Li C; Huang F; Zeng M; Liu Y; Yu Y; Ding X; Wu Y; Wu Z; Mao C; Yi K; Wu P; Mo X Plant Physiol; 2015 Aug; 168(4):1762-76. PubMed ID: 26082401 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots. Li W; Lan P BMC Res Notes; 2015 Oct; 8():555. PubMed ID: 26459023 [TBL] [Abstract][Full Text] [Related]
11. Deubiquitinating Enzyme OTU5 Contributes to DNA Methylation Patterns and Is Critical for Phosphate Nutrition Signals. Yen MR; Suen DF; Hsu FM; Tsai YH; Fu H; Schmidt W; Chen PY Plant Physiol; 2017 Dec; 175(4):1826-1838. PubMed ID: 29061907 [TBL] [Abstract][Full Text] [Related]
12. Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Sánchez-Calderón L; López-Bucio J; Chacón-López A; Gutiérrez-Ortega A; Hernández-Abreu E; Herrera-Estrella L Plant Physiol; 2006 Mar; 140(3):879-89. PubMed ID: 16443695 [TBL] [Abstract][Full Text] [Related]
13. Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. Kobayashi K; Awai K; Nakamura M; Nagatani A; Masuda T; Ohta H Plant J; 2009 Jan; 57(2):322-31. PubMed ID: 18808455 [TBL] [Abstract][Full Text] [Related]
14. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. Bustos R; Castrillo G; Linhares F; Puga MI; Rubio V; Pérez-Pérez J; Solano R; Leyva A; Paz-Ares J PLoS Genet; 2010 Sep; 6(9):e1001102. PubMed ID: 20838596 [TBL] [Abstract][Full Text] [Related]
15. Genome accessibility dynamics in response to phosphate limitation is controlled by the PHR1 family of transcription factors in Barragán-Rosillo AC; Peralta-Alvarez CA; Ojeda-Rivera JO; Arzate-Mejía RG; Recillas-Targa F; Herrera-Estrella L Proc Natl Acad Sci U S A; 2021 Aug; 118(33):. PubMed ID: 34385324 [TBL] [Abstract][Full Text] [Related]
16. [The effects of phosphorus, glucose and cytokinin on SEN1 gene expression in Arabidopsis]. Yu C; Hou XL; Wu P Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):85-9. PubMed ID: 15692183 [TBL] [Abstract][Full Text] [Related]
17. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Devaiah BN; Nagarajan VK; Raghothama KG Plant Physiol; 2007 Sep; 145(1):147-59. PubMed ID: 17631527 [TBL] [Abstract][Full Text] [Related]
18. The paralogous R3 MYB proteins CAPRICE, TRIPTYCHON and ENHANCER OF TRY AND CPC1 play pleiotropic and partly non-redundant roles in the phosphate starvation response of Arabidopsis roots. Chen CY; Schmidt W J Exp Bot; 2015 Aug; 66(15):4821-34. PubMed ID: 26022254 [TBL] [Abstract][Full Text] [Related]
19. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276 [TBL] [Abstract][Full Text] [Related]
20. Arabidopsis thaliana mutant lpsi reveals impairment in the root responses to local phosphate availability. Karthikeyan AS; Jain A; Nagarajan VK; Sinilal B; Sahi SV; Raghothama KG Plant Physiol Biochem; 2014 Apr; 77():60-72. PubMed ID: 24561248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]