These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 26668843)
1. Simultaneous acquisition of infrared, fluorescence and light scattering spectra of proteins: direct evidence for pre-fibrillar species in amyloid fibril formation. Baldassarre M; Bennett M; Barth A Analyst; 2016 Feb; 141(3):963-73. PubMed ID: 26668843 [TBL] [Abstract][Full Text] [Related]
2. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure. Gosal WS; Clark AH; Ross-Murphy SB Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058 [TBL] [Abstract][Full Text] [Related]
3. A setup for simultaneous measurement of infrared spectra and light scattering signals: watching amyloid fibrils grow from intact proteins. Li Y; Maurer J; Roth A; Vogel V; Winter E; Mäntele W Rev Sci Instrum; 2014 Aug; 85(8):084302. PubMed ID: 25173287 [TBL] [Abstract][Full Text] [Related]
4. Beta-lactoglobulin assembles into amyloid through sequential aggregated intermediates. Giurleo JT; He X; Talaga DS J Mol Biol; 2008 Sep; 381(5):1332-48. PubMed ID: 18590743 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion. Kumar S; Mohanty SK; Udgaonkar JB J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913 [TBL] [Abstract][Full Text] [Related]
6. Amyloid fibrils formation of concanavalin A at basic pH. Carrotta R; Vetri V; Librizzi F; Martorana V; Militello V; Leone M J Phys Chem B; 2011 Mar; 115(12):2691-8. PubMed ID: 21391626 [TBL] [Abstract][Full Text] [Related]
8. Intermediates caught in the act: tracing insulin amyloid fibril formation in time by combined optical spectroscopy, light scattering, mass spectrometry and microscopy. Gladytz A; Lugovoy E; Charvat A; Häupl T; Siefermann KR; Abel B Phys Chem Chem Phys; 2015 Jan; 17(2):918-27. PubMed ID: 25408431 [TBL] [Abstract][Full Text] [Related]
9. Resveratrol Induces the Conversion from Amyloid to Amorphous Aggregation of β-lactoglobulin>. Ma B; Zhang F; Liu Y; Xie J; Wang X Protein Pept Lett; 2018 Feb; 24(12):1113-1119. PubMed ID: 28925863 [TBL] [Abstract][Full Text] [Related]
10. Coaggregation of κ-Casein and β-Lactoglobulin Produces Morphologically Distinct Amyloid Fibrils. Raynes JK; Day L; Crepin P; Horrocks MH; Carver JA Small; 2017 Apr; 13(14):. PubMed ID: 28146312 [TBL] [Abstract][Full Text] [Related]
11. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation. Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680 [TBL] [Abstract][Full Text] [Related]
12. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism. VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391 [TBL] [Abstract][Full Text] [Related]
13. Light scattering analysis of fibril growth from the amino-terminal fragment beta(1-28) of beta-amyloid peptide. Shen CL; Scott GL; Merchant F; Murphy RM Biophys J; 1993 Dec; 65(6):2383-95. PubMed ID: 8312477 [TBL] [Abstract][Full Text] [Related]
14. On the Molecular Form of Amyloid Marker, Auramine O, in Human Insulin Fibrils. Mudliar NH; Pettiwala AM; Awasthi AA; Singh PK J Phys Chem B; 2016 Dec; 120(49):12474-12485. PubMed ID: 27973839 [TBL] [Abstract][Full Text] [Related]
15. Macromolecular crowding modulates the kinetics and morphology of amyloid self-assembly by β-lactoglobulin. Ma B; Xie J; Wei L; Li W Int J Biol Macromol; 2013 Feb; 53():82-7. PubMed ID: 23148946 [TBL] [Abstract][Full Text] [Related]
16. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange. Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067 [TBL] [Abstract][Full Text] [Related]
17. Conversion of non-fibrillar beta-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation. Benseny-Cases N; Cócera M; Cladera J Biochem Biophys Res Commun; 2007 Oct; 361(4):916-21. PubMed ID: 17679138 [TBL] [Abstract][Full Text] [Related]
18. Nanoscale Characterization of Parallel and Antiparallel β-Sheet Amyloid Beta 1-42 Aggregates. Zhaliazka K; Kurouski D ACS Chem Neurosci; 2022 Oct; 13(19):2813-2820. PubMed ID: 36122250 [TBL] [Abstract][Full Text] [Related]
19. Formation of amyloid fibrils in vitro from partially unfolded intermediates of human gammaC-crystallin. Wang Y; Petty S; Trojanowski A; Knee K; Goulet D; Mukerji I; King J Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):672-8. PubMed ID: 19684009 [TBL] [Abstract][Full Text] [Related]
20. Metal ions modulate thermal aggregation of beta-lactoglobulin: a joint chemical and physical characterization. Navarra G; Tinti A; Di Foggia M; Leone M; Militello V; Torreggiani A J Inorg Biochem; 2014 Aug; 137():64-73. PubMed ID: 24813398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]