These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26669415)

  • 1. Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation.
    Kikawada M; Ono A; Inami W; Kawata Y
    Anal Chem; 2016 Jan; 88(2):1407-11. PubMed ID: 26669415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence enhancement with deep-ultraviolet surface plasmon excitation.
    Ono A; Kikawada M; Akimoto R; Inami W; Kawata Y
    Opt Express; 2013 Jul; 21(15):17447-53. PubMed ID: 23938614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films.
    Tanabe I; Tanaka YY; Watari K; Hanulia T; Goto T; Inami W; Kawata Y; Ozaki Y
    Sci Rep; 2017 Jul; 7(1):5934. PubMed ID: 28725007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep UV autofluorescence microscopy for cell biology and tissue histology.
    Jamme F; Kascakova S; Villette S; Allouche F; Pallu S; Rouam V; Réfrégiers M
    Biol Cell; 2013 Jul; 105(7):277-88. PubMed ID: 23517500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence Microscopy with Deep UV, Near UV, and Visible Excitation for
    Case N; Johnston N; Nadeau J
    Astrobiology; 2024 Mar; 24(3):300-317. PubMed ID: 38507693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces.
    Szunerits S; Maalouli N; Wijaya E; Vilcot JP; Boukherroub R
    Anal Bioanal Chem; 2013 Feb; 405(5):1435-43. PubMed ID: 23314618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free bacterial imaging with deep-UV-laser-induced native fluorescence.
    Bhartia R; Salas EC; Hug WF; Reid RD; Lane AL; Edwards KJ; Nealson KH
    Appl Environ Microbiol; 2010 Nov; 76(21):7231-7. PubMed ID: 20817797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet surface plasmon-coupled emission using thin aluminum films.
    Gryczynski I; Malicka J; Gryczynski Z; Nowaczyk K; Lakowicz JR
    Anal Chem; 2004 Jul; 76(14):4076-81. PubMed ID: 15253645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction to Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation.
    Kikawada M; Ono A; Inami W; Kawata Y
    Anal Chem; 2016 Apr; 88(8):4580. PubMed ID: 27019214
    [No Abstract]   [Full Text] [Related]  

  • 10. Synchrotron UV fluorescence microscopy uncovers new probes in cells and tissues.
    Jamme F; Villette S; Giuliani A; Rouam V; Wien F; Lagarde B; Réfrégiers M
    Microsc Microanal; 2010 Oct; 16(5):507-14. PubMed ID: 20738889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct optical measurements of far- and deep-ultraviolet surface plasmon resonance with different refractive indices.
    Tanabe I; Tanaka YY; Ryoki T; Watari K; Goto T; Kikawada M; Inami W; Kawata Y; Ozaki Y
    Opt Express; 2016 Sep; 24(19):21886-96. PubMed ID: 27661924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays.
    Jha SK; Ahmed Z; Agio M; Ekinci Y; Löffler JF
    J Am Chem Soc; 2012 Feb; 134(4):1966-9. PubMed ID: 22239484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaches for deep-ultraviolet surface plasmon resonance sensors.
    Moreira C; Wang Y; Blair S; Chadwick E; Lee JY; Oliveira L; Lima A; Cruz R
    Opt Lett; 2020 Aug; 45(16):4642-4645. PubMed ID: 32797030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep ultraviolet 266 nm laser excitation for flow cytometry.
    Telford W
    Cytometry A; 2024 Mar; 105(3):214-221. PubMed ID: 38116677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Surface Plasmon Resonance Wavelength Shifts by Molecular Electronic Absorption in Far- and Deep-Ultraviolet Regions.
    Tanabe I; Tanaka YY; Watari K; Inami W; Kawata Y; Ozaki Y
    Sci Rep; 2020 Jun; 10(1):9938. PubMed ID: 32555405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy.
    Chabot V; Miron Y; Charette PG; Grandbois M
    Biosens Bioelectron; 2013 Dec; 50():125-31. PubMed ID: 23845690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides.
    Barulin A; Claude JB; Patra S; Bonod N; Wenger J
    Nano Lett; 2019 Oct; 19(10):7434-7442. PubMed ID: 31526002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of artificial ceroid/lipofuscin by UV-oxidation of subcellular organelles.
    Nilsson E; Yin D
    Mech Ageing Dev; 1997 Dec; 99(1):61-78. PubMed ID: 9430105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary approach of real-time monitoring in vitro matrix mineralization based on surface plasmon resonance detection.
    Kim SA; Das S; Lee H; Kim J; Song YM; Kim IS; Byun KM; Hwang SJ; Kim SJ
    Biotechnol Bioeng; 2011 Jun; 108(6):1473-8. PubMed ID: 21192003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
    Couture M; Live LS; Dhawan A; Masson JF
    Analyst; 2012 Sep; 137(18):4162-70. PubMed ID: 22832550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.