BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26669681)

  • 1. Computational characterisation of the interactions between human ST6Gal I and transition-state analogue inhibitors: insights for inhibitor design.
    Montgomery A; Szabo R; Skropeta D; Yu H
    J Mol Recognit; 2016 May; 29(5):210-22. PubMed ID: 26669681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition state-based ST6Gal I inhibitors: Mimicking the phosphodiester linkage with a triazole or carbamate through an enthalpy-entropy compensation.
    Montgomery AP; Skropeta D; Yu H
    Sci Rep; 2017 Oct; 7(1):14428. PubMed ID: 29089525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided design of human sialyltransferase inhibitors of hST8Sia III.
    Dobie C; Montgomery AP; Szabo R; Skropeta D; Yu H
    J Mol Recognit; 2018 Feb; 31(2):. PubMed ID: 29119617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis and evaluation of carbamate-linked uridyl-based inhibitors of human ST6Gal I.
    Montgomery AP; Dobie C; Szabo R; Hallam L; Ranson M; Yu H; Skropeta D
    Bioorg Med Chem; 2020 Jul; 28(14):115561. PubMed ID: 32616185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible sialylation: synthesis of cytidine 5'-monophospho-N-acetylneuraminic acid from cytidine 5'-monophosphate with alpha2,3-sialyl O-glycan-, glycolipid-, and macromolecule-based donors yields diverse sialylated products.
    Chandrasekaran EV; Xue J; Xia J; Locke RD; Matta KL; Neelamegham S
    Biochemistry; 2008 Jan; 47(1):320-30. PubMed ID: 18067323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic basis for N-glycan sialylation: structure of rat α2,6-sialyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation.
    Meng L; Forouhar F; Thieker D; Gao Z; Ramiah A; Moniz H; Xiang Y; Seetharaman J; Milaninia S; Su M; Bridger R; Veillon L; Azadi P; Kornhaber G; Wells L; Montelione GT; Woods RJ; Tong L; Moremen KW
    J Biol Chem; 2013 Nov; 288(48):34680-98. PubMed ID: 24155237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Substituted Cyclopentane-CMP Conjugates as Potent Sialyltransferase Inhibitors.
    Li W; Niu Y; Xiong DC; Cao X; Ye XS
    J Med Chem; 2015 Oct; 58(20):7972-90. PubMed ID: 26406919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological evaluation of sulfonate and sulfate analogues of lithocholic acid: A bioisosterism-guided approach towards the discovery of potential sialyltransferase inhibitors for antimetastatic study.
    Perez SJLP; Chen CL; Chang TT; Li WS
    Bioorg Med Chem Lett; 2024 Jun; 105():129760. PubMed ID: 38641151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational and electrostatic analysis of S
    Crous W; Naidoo KJ
    Bioorg Med Chem; 2016 Oct; 24(20):4998-5005. PubMed ID: 27614914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecto-sialyltransferase of human B lymphocytes reconstitutes differentiation markers in the presence of exogenous CMP-N-acetyl neuraminic acid.
    Gross HJ; Merling A; Moldenhauer G; Schwartz-Albiez R
    Blood; 1996 Jun; 87(12):5113-26. PubMed ID: 8652824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of human α-2,6-sialyltransferase reveals the binding mode of complex glycans.
    Kuhn B; Benz J; Greif M; Engel AM; Sobek H; Rudolph MG
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1826-38. PubMed ID: 23999306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of bisubstrate and donor analogues of sialyltransferase and their inhibitory activities.
    Izumi M; Wada K; Yuasa H; Hashimoto H
    J Org Chem; 2005 Oct; 70(22):8817-24. PubMed ID: 16238314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unliganded and CMP-Neu5Ac bound structures of human α-2,6-sialyltransferase ST6Gal I at high resolution.
    Harrus D; Harduin-Lepers A; Glumoff T
    J Struct Biol; 2020 Nov; 212(2):107628. PubMed ID: 32971290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of cell surface acceptors by two human alpha-2,6-sialyltransferases produced in CHO cells.
    Donadio S; Dubois C; Fichant G; Roybon L; Guillemot JC; Breton C; Ronin C
    Biochimie; 2003; 85(3-4):311-21. PubMed ID: 12770770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of α-Hydroxy-1,2,3-Triazole-linked Sialyltransferase Inhibitors and Evaluation of Selectivity Towards ST3GAL1, ST6GAL1 and ST8SIA2.
    Szabo R; Dobie C; Montgomery A; Steele H; Yu H; Skropeta D
    ChemMedChem; 2024 May; ():e202400088. PubMed ID: 38758134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Bacterial α(2,6)-Sialyltransferase Reaction through an Inhibition of Its Inherent Sialidase Activity by Dephosphorylation of Cytidine-5'-Monophosphate.
    Kang JY; Lim SJ; Kwon O; Lee SG; Kim HH; Oh DB
    PLoS One; 2015; 10(7):e0133739. PubMed ID: 26231036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sialyltransferase inhibition and recent advances.
    Wang L; Liu Y; Wu L; Sun XL
    Biochim Biophys Acta; 2016 Jan; 1864(1):143-53. PubMed ID: 26192491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric synthesis and affinity of potent sialyltransferase inhibitors based on transition-state analogues.
    Skropeta D; Schwörer R; Haag T; Schmidt RR
    Glycoconj J; 2004; 21(5):205-19. PubMed ID: 15486453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of sialyltransferase mutants using surface plasmon resonance.
    Laroy W; Ameloot P; Contreras R
    Glycobiology; 2001 Mar; 11(3):175-82. PubMed ID: 11320056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a multifunctional α2,3-sialyltransferase from Pasteurella dagmatis.
    Schmölzer K; Ribitsch D; Czabany T; Luley-Goedl C; Kokot D; Lyskowski A; Zitzenbacher S; Schwab H; Nidetzky B
    Glycobiology; 2013 Nov; 23(11):1293-304. PubMed ID: 23969291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.