BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26670135)

  • 1. RNA-sequencing Reveals Global Transcriptomic Changes in Nicotiana tabacum Responding to Topping and Treatment of Axillary-shoot Control Chemicals.
    Singh SK; Wu Y; Ghosh JS; Pattanaik S; Fisher C; Wang Y; Lawson D; Yuan L
    Sci Rep; 2015 Dec; 5():18148. PubMed ID: 26670135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic analysis of topping-induced axillary shoot outgrowth in Nicotiana tabacum.
    Wang WF; Chen P; Lv J; Chen L; Sun YH
    Gene; 2018 Mar; 646():169-180. PubMed ID: 29292191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maleic hydrazide elicits global transcriptomic changes in chemically topped tobacco to influence shoot bud development.
    Singh SK; Richmond MD; Pearce RC; Bailey WA; Hou X; Pattanaik S; Yuan L
    Planta; 2020 Sep; 252(4):64. PubMed ID: 32968874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis reveals key genes involved in the regulation of nicotine biosynthesis at early time points after topping in tobacco (Nicotiana tabacum L.).
    Qin Y; Bai S; Li W; Sun T; Galbraith DW; Yang Z; Zhou Y; Sun G; Wang B
    BMC Plant Biol; 2020 Jan; 20(1):30. PubMed ID: 31959100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis reveals the key network of axillary bud outgrowth modulated by topping in citrus.
    Li YT; Liu DH; Luo Y; Abbas Khan M; Mahmood Alam S; Liu YZ
    Gene; 2024 Oct; 926():148623. PubMed ID: 38821328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transcriptomic profile of topping responsive non-coding RNAs in tobacco roots (Nicotiana tabacum).
    Chen X; Sun S; Liu F; Shen E; Liu L; Ye C; Xiao B; Timko MP; Zhu QH; Fan L; Cao P
    BMC Genomics; 2019 Nov; 20(1):856. PubMed ID: 31726968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spatial-temporal understanding of gene regulatory networks and NtARF-mediated regulation of potassium accumulation in tobacco.
    Wang X; Wang B; Song Z; Zhao L; Ruan W; Gao Y; Jia X; Yi K
    Planta; 2021 Nov; 255(1):9. PubMed ID: 34846564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen application and differences in leaf number retained after topping affect the tobacco (Nicotiana tabacum) transcriptome and metabolome.
    Lei B; Chang W; Zhao H; Zhang K; Yu J; Yu S; Cai K; Zhang J; Lu K
    BMC Plant Biol; 2022 Jan; 22(1):38. PubMed ID: 35045826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of lateral shoot formation by RNA interference and chemically induced mutations to genes expressed in the axillary meristem of Nicotiana tabacum L.
    Hamano K; Sato S; Arai M; Negishi Y; Nakamura T; Komatsu T; Naragino T; Suzuki S
    BMC Plant Biol; 2021 May; 21(1):236. PubMed ID: 34044782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NtNAC-R1, a novel NAC transcription factor gene in tobacco roots, responds to mechanical damage of shoot meristem.
    Fu Y; Guo H; Cheng Z; Wang R; Li G; Huo G; Liu W
    Plant Physiol Biochem; 2013 Aug; 69():74-81. PubMed ID: 23728390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topping and grafting affect the alkaloid content and gene expression patterns of tobacco (
    Zhang M; Zhao Y; Shi H
    Plant Direct; 2023 Jan; 7(1):e478. PubMed ID: 36620076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of miRNAs in response to topping in flue-cured tobacco (Nicotiana tabacum) roots.
    Guo H; Kan Y; Liu W
    PLoS One; 2011; 6(12):e28565. PubMed ID: 22194852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive analysis of differential genes and miRNA profiles for discovery of topping-responsive genes in flue-cured tobacco roots.
    Qi Y; Guo H; Li K; Liu W
    FEBS J; 2012 Mar; 279(6):1054-70. PubMed ID: 22251798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome Analysis of Gene Expression Patterns Potentially Associated with Premature Senescence in
    Zhao Z; Li Y; Zhao S; Zhang J; Zhang H; Fu B; He F; Zhao M; Liu P
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30400189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptomic analysis reveals that multiple hormone signal transduction and carbohydrate metabolic pathways are affected by Bacillus cereus in Nicotiana tabacum.
    Li Y; Zhao M; Chen W; Du H; Xie X; Wang D; Dai Y; Xia Q; Wang G
    Genomics; 2020 Nov; 112(6):4254-4267. PubMed ID: 32679071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotine synthesis in Nicotiana tabacum L. induced by mechanical wounding is regulated by auxin.
    Shi Q; Li C; Zhang F
    J Exp Bot; 2006; 57(11):2899-907. PubMed ID: 16868042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Nicotiana tabacum PIN genes identifies NtPIN4 as a key regulator of axillary bud growth.
    Xie X; Qin G; Si P; Luo Z; Gao J; Chen X; Zhang J; Wei P; Xia Q; Lin F; Yang J
    Physiol Plant; 2017 Jun; 160(2):222-239. PubMed ID: 28128458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptome analysis of tobacco (Nicotiana tabacum) leaves to identify aroma compound-related genes expressed in different cultivated regions.
    Lei B; Zhao XH; Zhang K; Zhang J; Ren W; Ren Z; Chen Y; Zhao HN; Pan WJ; Chen W; Li HX; Deng WY; Ding FZ; Lu K
    Mol Biol Rep; 2013 Jan; 40(1):345-57. PubMed ID: 23079704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analyses provide insights into the homeostatic regulation of axillary buds in upland cotton (G. hirsutum L.).
    Shi J; Wang N; Zhou H; Xu Q; Yan G
    BMC Plant Biol; 2020 May; 20(1):228. PubMed ID: 32448205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fertilization Independent Endosperm genes repress NbGH3.6 and regulate the auxin level during shoot development in Nicotiana benthamiana.
    Zeng J; Ding Q; Fukuda H; He XQ
    J Exp Bot; 2016 Apr; 67(8):2207-17. PubMed ID: 26873977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.