BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26670289)

  • 1. Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass.
    Cao Y; Niu W; Guo J; Xian M; Liu H
    Sci Rep; 2015 Dec; 5():18149. PubMed ID: 26670289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli.
    Wang X; Xu N; Hu S; Yang J; Gao Q; Xu S; Chen K; Ouyang P
    Bioresour Technol; 2018 Feb; 250():406-412. PubMed ID: 29195152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Escherichia coli for the production of xylonate.
    Cao Y; Xian M; Zou H; Zhang H
    PLoS One; 2013; 8(7):e67305. PubMed ID: 23861757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production.
    Jing P; Cao X; Lu X; Zong H; Zhuge B
    J Biosci Bioeng; 2018 Nov; 126(5):547-552. PubMed ID: 29945765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli.
    Zhang N; Wang J; Zhang Y; Gao H
    Enzyme Microb Technol; 2016 Nov; 93-94():51-58. PubMed ID: 27702485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli.
    Liu H; Valdehuesa KN; Nisola GM; Ramos KR; Chung WJ
    Bioresour Technol; 2012 Jul; 115():244-8. PubMed ID: 21917451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient production of 1,2,4-butanetriol from corn cob hydrolysate by metabolically engineered Escherichia coli.
    Li P; Wang M; Di H; Du Q; Zhang Y; Tan X; Xu P; Gao C; Jiang T; Lü C; Ma C
    Microb Cell Fact; 2024 Feb; 23(1):49. PubMed ID: 38347493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering.
    Bamba T; Yukawa T; Guirimand G; Inokuma K; Sasaki K; Hasunuma T; Kondo A
    Metab Eng; 2019 Dec; 56():17-27. PubMed ID: 31434008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins.
    Lu X; He S; Zong H; Song J; Chen W; Zhuge B
    World J Microbiol Biotechnol; 2016 Sep; 32(9):149. PubMed ID: 27430516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of a xylose pathway for biotechnological production of glycolate in Escherichia coli.
    Liu M; Ding Y; Xian M; Zhao G
    Microb Cell Fact; 2018 Mar; 17(1):51. PubMed ID: 29592804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of Optically Pure (
    Cao Y; Niu W; Guo J; Guo J; Liu H; Liu H; Xian M
    J Agric Food Chem; 2023 Dec; 71(50):20167-20176. PubMed ID: 38088131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Optimization of 1,2,4-butanetriol synthetic pathway in Escherichia coli].
    Sun L; Yang F; Zhu T; Li X; Sun H; Li Y; Xu Z; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2016 Jan; 32(1):51-63. PubMed ID: 27363198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of 1,2,4-butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance.
    Yukawa T; Bamba T; Guirimand G; Matsuda M; Hasunuma T; Kondo A
    Biotechnol Bioeng; 2021 Jan; 118(1):175-185. PubMed ID: 32902873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic pathway optimization for improved 1,2,4-butanetriol production.
    Sun L; Yang F; Sun H; Zhu T; Li X; Li Y; Xu Z; Zhang Y
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):67-78. PubMed ID: 26498325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli.
    Valdehuesa KN; Lee WK; Ramos KR; Cabulong RB; Choi J; Liu H; Nisola GM; Chung WJ
    Bioprocess Biosyst Eng; 2015 Sep; 38(9):1761-72. PubMed ID: 26048478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering a novel D-xylonate-responsive promoter: the P
    Bañares AB; Valdehuesa KNG; Ramos KRM; Nisola GM; Lee WK; Chung WJ
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):8063-8074. PubMed ID: 31482281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol.
    Niu W; Molefe MN; Frost JW
    J Am Chem Soc; 2003 Oct; 125(43):12998-9. PubMed ID: 14570452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose.
    Zhao A; Hu X; Wang X
    Appl Microbiol Biotechnol; 2017 May; 101(9):3587-3603. PubMed ID: 28190099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli.
    Liu R; Liang L; Li F; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 Dec; 149():84-91. PubMed ID: 24096277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.